-
Notifications
You must be signed in to change notification settings - Fork 161
/
transformer.py
169 lines (145 loc) · 5.97 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RT1 decoder transformer.
Copied from:
https://www.tensorflow.org/text/tutorials/transformer#decoder
"""
from typing import Tuple, Union
import tensorflow as tf
class _TransformerLayer(tf.keras.layers.Layer):
"""A single transformer block."""
def __init__(self,
layer_size: int = 4096,
num_heads: int = 8,
feed_forward_size: int = 512,
dropout_rate: float = 0.1,
return_attention_scores: bool = False):
"""Creates a Transformer layer.
Args:
layer_size: Size of the multiple head attention layer.
num_heads: Number of heads for the multiple head attention layer.
feed_forward_size: Dimensionality of the feed_forward layer.
dropout_rate: Dropout rate.
return_attention_scores: Return attention scores.
"""
super(_TransformerLayer, self).__init__()
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.mha1 = tf.keras.layers.MultiHeadAttention(
key_dim=layer_size, num_heads=num_heads, dropout=dropout_rate)
self.ff = tf.keras.layers.Dense(feed_forward_size)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout_ff = tf.keras.layers.Dropout(dropout_rate)
self._return_attention_scores = return_attention_scores
def call(self, x: tf.Tensor, attention_mask: tf.Tensor,
training: bool) -> Tuple[tf.Tensor, Union[tf.Tensor, None]]:
"""Calls the layer.
Args:
x: Input Tensor of shape `(B, T, dim)`.
attention_mask: a boolean mask of shape `(B, T, T)`, that prevents
attention to certain positions. The boolean mask specifies which query
elements can attend to which key elements, 1 indicates attention and 0
indicates no attention. Broadcasting can happen for the missing batch
dimensions and the head dimension.
training: Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (no dropout).
Returns:
y: Output Tensor of shape `(B, T, dim)`. Also return the attention scores
of shape `(B, T, dim)` or None.
"""
x1 = self.layernorm1(x)
mha_results = self.mha1(
query=x1,
key=x1,
value=x1,
attention_mask=attention_mask,
return_attention_scores=self._return_attention_scores,
training=training)
if self._return_attention_scores:
x1, score = mha_results
else:
x1, score = mha_results, None
x = x + x1
y = self.layernorm2(x)
ff_y = self.ff(y)
ff_y = self.dropout_ff(ff_y, training=training)
x = x + ff_y
return x, score
class Transformer(tf.keras.layers.Layer):
"""A decoder only transformer."""
def __init__(self,
num_layers: int = 1,
layer_size: int = 4096,
num_heads: int = 8,
feed_forward_size: int = 512,
dropout_rate: float = 0.1,
vocab_size: int = 256,
return_attention_scores: bool = False):
"""Creates a transformer.
Args:
num_layers: Number of transformer layers.
layer_size: Size of the multiple head attention layer.
num_heads: Number of heads for the multiple head attention layer.
feed_forward_size: Dimensionality of the feed_forward layer.
dropout_rate: Dropout rate.
vocab_size: Dimensionality of tokens from the output layer.
return_attention_scores: Return attention scores.
"""
super(Transformer, self).__init__()
self._layers = [
_TransformerLayer( # pylint: disable=g-complex-comprehension
layer_size=layer_size,
num_heads=num_heads,
feed_forward_size=feed_forward_size,
dropout_rate=dropout_rate,
return_attention_scores=return_attention_scores)
for _ in range(num_layers)
]
self._token_emb = tf.keras.layers.Dense(feed_forward_size)
self._position_emb = tf.keras.layers.Dense(feed_forward_size)
self._output_tokens = tf.keras.layers.Dense(vocab_size)
def call(
self,
x: tf.Tensor,
training: bool,
attention_mask: tf.Tensor,
) -> Union[tf.Tensor, Tuple[tf.Tensor, list[tf.Tensor]]]:
"""Calls the layer.
Args:
x: Input Tensor of shape `(B, T, dim)`.
training: Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (no dropout).
attention_mask: a boolean mask of shape `(B, T, T)`, that prevents
attention to certain positions. The boolean mask specifies which query
elements can attend to which key elements, 1 indicates attention and 0
indicates no attention. Broadcasting can happen for the missing batch
dimensions and the head dimension.
Returns:
x: Output Tensor of shape `(B, T, vocab_size)`. If
`return_attention_scores`, also return attention scores of
a list of `layer` of elements with shape `(B, T, dim)`.
"""
seq_len = tf.shape(x)[1]
batch_size = tf.shape(x)[0]
positions = tf.one_hot(
tf.tile(tf.expand_dims(tf.range(0, seq_len, 1), 0), [batch_size, 1]),
seq_len)
x = self._token_emb(x)
x += self._position_emb(positions)
scores = []
for layer in self._layers:
x, score = layer(x, attention_mask=attention_mask, training=training)
if score is not None:
scores.append(score)
x = self._output_tokens(x)
return x, scores