-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
pricing.h
353 lines (311 loc) · 12.5 KB
/
pricing.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GLOP_PRICING_H_
#define OR_TOOLS_GLOP_PRICING_H_
#include <cmath>
#include <random>
#include <string>
#include "absl/log/check.h"
#include "absl/random/bit_gen_ref.h"
#include "absl/random/random.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/util/bitset.h"
#include "ortools/util/stats.h"
namespace operations_research {
namespace glop {
// Maintains a set of elements in [0, n), each with an associated value and
// allows to query the element of maximum value efficiently.
//
// This is optimized for use in the pricing step of the simplex algorithm.
// Basically at each simplex iterations, you want to:
//
// 1/ Get the candidate with the maximum value. The number of candidates
// can be close to n, or really small. You also want some randomization if
// several elements have an equivalent (maximum) value.
//
// 2/ Update the set of candidate and their values, where the number of update
// is usually a lot smaller than n. Note that in some corner cases, there are
// two "updates" phases, so a position can be updated twice.
//
// The idea is to be faster than O(num_candidates) per GetMaximum(), most of the
// time. All updates should be in O(1) with as little overhead as possible. The
// algorithm here dynamically maintain the top-k (for k=32) with best effort and
// use it instead of doing a O(num_candidates) scan when possible.
//
// Note that when O(num_updates) << n, this can have a huge effect. A basic O(1)
// per update, O(num_candidates) per maximum query was taking around 60% of the
// total time on graph40-80-1rand.pb.gz ! with the top-32 algo coded here, it is
// around 3%, and the number of "fast" GetMaximum() that hit the top-k heap on
// the first 120s of that problem was 250757 / 255659. Note that n was 282624 in
// this case, which is not even the biggest size we can tackle.
//
// Note(user): This could be moved to util/ as a general class if someone wants
// to reuse it, it is however tuned for use in Glop pricing step and might
// becomes even more specific in the future.
template <typename Index>
class DynamicMaximum {
public:
// To simplify the APIs, we take a random number generator at construction.
explicit DynamicMaximum(absl::BitGenRef random) : random_(random) {}
// Prepares the class to hold up to n candidates with indices in [0, n).
// Initially no indices is a candidate.
void ClearAndResize(Index n);
// Returns the index with the maximum value or Index(-1) if the set is empty
// and there is no possible candidate. If there are more than one candidate
// with the same maximum value, this will return a random one (not always
// uniformly if there is a large number of ties).
Index GetMaximum();
// Removes the given index from the set of candidates.
void Remove(Index position);
// Adds an element to the set of candidate and sets its value. If the element
// is already present, this updates its value. The value must be finite.
void AddOrUpdate(Index position, Fractional value);
// Optimized version of AddOrUpdate() for the dense case. If one knows that
// there will be O(n) updates, it is possible to call StartDenseUpdates() and
// then use DenseAddOrUpdate() instead of AddOrUpdate() which is slighlty
// faster.
//
// Note that calling AddOrUpdate() will still works fine, but will cause an
// extra test per call.
void StartDenseUpdates();
void DenseAddOrUpdate(Index position, Fractional value);
// Returns the current size n that was used in the last ClearAndResize().
void Clear() { ClearAndResize(Index(0)); }
Index Size() const { return values_.size(); }
// Returns some stats about this class if they are enabled.
std::string StatString() const { return stats_.StatString(); }
private:
// Adds an elements to the set of top elements.
void UpdateTopK(Index position, Fractional value);
// Returns a random element from the set {best} U {equivalent_choices_}.
// If equivalent_choices_ is empty, this just returns best.
Index RandomizeIfManyChoices(Index best);
// For tie-breaking.
absl::BitGenRef random_;
std::vector<Index> equivalent_choices_;
// Set of candidates and their value.
// Note that if is_candidate_[index] is false, values_[index] can be anything.
StrictITIVector<Index, Fractional> values_;
Bitset64<Index> is_candidate_;
// We maintain the top-k current candidates for a fixed k. Note that not all
// entries in tops_ are necessary up to date since we don't remove elements.
// There can even be duplicate elements inside if Update() add an element
// already inside. This is fine, since tops_ will be recomputed as soon as we
// can't get the true maximum from there.
//
// The invariant is that:
// - All elements > threshold_ are in tops_.
// - All elements not in tops have a value <= threshold_.
// - elements == threshold_ can be in or out.
//
// In particular, the threshold only increase until the heap becomes empty and
// is recomputed from scratch by GetMaximum().
struct HeapElement {
HeapElement() = default;
HeapElement(Index i, Fractional v) : index(i), value(v) {}
Index index;
Fractional value;
// We want a min-heap: tops_.top() actually represents the k-th value, not
// the max.
double operator<(const HeapElement& other) const {
return value > other.value;
}
};
Fractional threshold_;
std::vector<HeapElement> tops_;
// Statistics about the class.
struct QueryStats : public StatsGroup {
QueryStats()
: StatsGroup("PricingStats"),
get_maximum("get_maximum", this),
heap_size_on_hit("heap_size_on_hit", this),
random_choices("random_choices", this) {}
TimeDistribution get_maximum;
IntegerDistribution heap_size_on_hit;
IntegerDistribution random_choices;
};
QueryStats stats_;
};
template <typename Index>
inline void DynamicMaximum<Index>::ClearAndResize(Index n) {
tops_.clear();
threshold_ = -kInfinity;
values_.resize(n);
is_candidate_.ClearAndResize(n);
}
template <typename Index>
inline void DynamicMaximum<Index>::Remove(Index position) {
is_candidate_.Clear(position);
}
template <typename Index>
inline void DynamicMaximum<Index>::StartDenseUpdates() {
// This disable tops_ until the next GetMaximum().
tops_.clear();
threshold_ = kInfinity;
}
template <typename Index>
inline void DynamicMaximum<Index>::DenseAddOrUpdate(Index position,
Fractional value) {
DCHECK(!std::isnan(value));
DCHECK(tops_.empty());
is_candidate_.Set(position);
values_[position] = value;
}
template <typename Index>
inline void DynamicMaximum<Index>::AddOrUpdate(Index position,
Fractional value) {
DCHECK(!std::isnan(value));
is_candidate_.Set(position);
values_[position] = value;
if (value >= threshold_) UpdateTopK(position, value);
}
template <typename Index>
inline Index DynamicMaximum<Index>::RandomizeIfManyChoices(Index best) {
if (equivalent_choices_.empty()) return best;
equivalent_choices_.push_back(best);
stats_.random_choices.Add(equivalent_choices_.size());
return equivalent_choices_[std::uniform_int_distribution<int>(
0, equivalent_choices_.size() - 1)(random_)];
}
template <typename Index>
inline Index DynamicMaximum<Index>::GetMaximum() {
SCOPED_TIME_STAT(&stats_);
Fractional best_value = -kInfinity;
Index best_position(-1);
equivalent_choices_.clear();
// Optimized version if the maximum is in tops_ already.
//
// We do two things here:
// 1/ Filter tops_ to only contain valid entries. This is because we never
// remove element, so the value of one of the element in tops might have
// decreased now. Note that we leave threshold_ untouched, so it
// can actually be lower than the minimum of the element in tops.
// 2/ Get the maximum of the valid elements.
if (!tops_.empty()) {
int new_size = 0;
for (const HeapElement e : tops_) {
// The two possible sources of "invalidity".
if (!is_candidate_[e.index]) continue;
if (values_[e.index] != e.value) continue;
tops_[new_size++] = e;
if (e.value >= best_value) {
if (e.value == best_value) {
equivalent_choices_.push_back(e.index);
continue;
}
equivalent_choices_.clear();
best_value = e.value;
best_position = e.index;
}
}
tops_.resize(new_size);
if (new_size != 0) {
stats_.heap_size_on_hit.Add(new_size);
return RandomizeIfManyChoices(best_position);
}
}
// We need to iterate over all the candidates.
threshold_ = -kInfinity;
DCHECK(tops_.empty());
const auto values = values_.const_view();
for (const Index position : is_candidate_) {
const Fractional value = values[position];
// TODO(user): Add a mode when we do not maintain the TopK for small sizes
// (like n < 1000) ? The gain might not be worth the extra code though.
if (value < threshold_) continue;
UpdateTopK(position, value);
if (value >= best_value) {
if (value == best_value) {
equivalent_choices_.push_back(position);
continue;
}
equivalent_choices_.clear();
best_value = value;
best_position = position;
}
}
return RandomizeIfManyChoices(best_position);
}
template <typename Index>
inline void DynamicMaximum<Index>::UpdateTopK(Index position,
Fractional value) {
// Note that this should only be called when an update is required.
DCHECK_GE(value, threshold_);
// We use a compile time size of the form 2^n - 1 to have a full binary heap.
//
// TODO(user): Adapt the size depending on the problem size? Note sure it is
// worth it. To experiment more.
constexpr int k = 31;
static_assert(((k + 1) & k) == 0, "k + 1 should be a power of 2.");
// Simply grow the vector until we hit a size of k.
if (tops_.size() < k) {
tops_.emplace_back(position, value);
if (tops_.size() == k) {
std::make_heap(tops_.begin(), tops_.end());
threshold_ = tops_[0].value;
}
return;
}
// If the value is equal, we randomly replace it. Having some randomness can
// also be important to increase the chance of keeping the true maximum in the
// top k set.
//
// TODO(user): use proper probability by counting the number of ties seen and
// replacing a random minimum element to get an uniform distribution? Note
// that it will never be truly uniform since once the top k structure is
// constructed, we will reuse it as much as possible, so it will be biased
// towards elements already inside.
if (value == tops_[0].value) {
if (absl::Bernoulli(random_, 0.5)) {
tops_[0].index = position;
}
return;
}
// The code below is basically a custom implementation of this. It is however
// only slighlty faster for such a small heap. So it might not be completely
// worth it.
if (/*DISABLES CODE*/ (false)) {
std::pop_heap(tops_.begin(), tops_.end());
tops_.back() = HeapElement(position, value);
std::push_heap(tops_.begin(), tops_.end());
threshold_ = tops_[0].value;
return;
}
// To not have to do std::pop_heap() and then std::push_heap(), we code our
// own update. Note that we exploit the fact that k is of the form 2^n - 1 to
// save one test per update.
int i = 0;
DCHECK_EQ(tops_.size(), k);
constexpr int limit = k / 2;
for (; i < limit;) {
const int left_child = 2 * i + 1;
const int right_child = left_child + 1;
const Fractional l_value = tops_[left_child].value;
const Fractional r_value = tops_[right_child].value;
if (l_value > r_value) {
if (value <= r_value) break;
tops_[i] = tops_[right_child];
i = right_child;
} else {
if (value <= l_value) break;
tops_[i] = tops_[left_child];
i = left_child;
}
}
tops_[i] = HeapElement(position, value);
threshold_ = tops_[0].value;
DCHECK(std::is_heap(tops_.begin(), tops_.end()));
}
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_PRICING_H_