-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathhamiltonian_path_test.cc
566 lines (526 loc) · 22.9 KB
/
hamiltonian_path_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/hamiltonian_path.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <functional>
#include <random>
#include <string>
#include <vector>
#include "absl/random/distributions.h"
#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "gtest/gtest.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
namespace operations_research {
TEST(SetTest, Enumerate) {
typedef Set<uint64_t> Set64;
for (int card = 0; card <= 64; ++card) {
Set64 set = Set64::FullSet(card);
ASSERT_EQ(card, set.Cardinality());
if (set.value() != 0) {
ASSERT_EQ(0, set.SmallestElement());
}
int pos = 0;
for (int i : set) {
EXPECT_EQ(pos, i);
++pos;
}
EXPECT_EQ(card, pos);
}
}
int64_t Choose(int64_t n, int64_t k) {
double result = 1.0;
for (int i = 1; i <= k; ++i) {
result *= static_cast<double>(n - k + i) / static_cast<double>(i);
}
return static_cast<int64_t>(std::round(result));
}
TEST(SetRangeWithCardinalityTest, Enumerate) {
typedef Set<uint32_t> Set32;
for (int max_card = 1; max_card <= 16; ++max_card) {
for (int card = 1; card <= max_card; ++card) {
int64_t num_subsets = 0;
Set32 previous_s(0);
for (const Set32 s :
SetRangeWithCardinality<Set<uint32_t>>(card, max_card)) {
++num_subsets;
EXPECT_EQ(card, s.Cardinality());
EXPECT_LT(previous_s.value(), s.value());
previous_s = s;
}
EXPECT_EQ(Choose(max_card, card), num_subsets);
}
}
}
TEST(LatticeMemoryManagerTest, Offset) {
typedef Set<uint32_t> Set32;
for (int max_card = 1; max_card < 16; ++max_card) {
LatticeMemoryManager<Set<uint32_t>, double> memory;
memory.Init(max_card);
int previous_pos = -1;
for (int card = 1; card <= max_card; ++card) {
for (Set32 set : SetRangeWithCardinality<Set32>(card, max_card)) {
for (int node : set) {
const int pos = memory.Offset(set, node);
EXPECT_EQ(previous_pos + 1, pos);
EXPECT_EQ(pos, memory.BaseOffset(card, set) + set.ElementRank(node));
previous_pos = pos;
}
}
}
}
}
// Displays the path.
std::string PathToString(absl::Span<const int> path) {
std::string path_string;
const int size = path.size();
for (int i = 0; i < size; i++) {
absl::StrAppendFormat(&path_string, "%d ", path[i]);
}
return path_string;
}
// Prints the cost and the computed path.
template <typename T, typename C>
void ComputeAndShow(const std::string& name,
HamiltonianPathSolver<T, C>* ham_solver) {
int best_end_node = ham_solver->BestHamiltonianPathEndNode();
LOG(INFO) << name << " End node = " << best_end_node;
LOG(INFO) << name << " Robustness = " << ham_solver->IsRobust();
LOG(INFO) << name << " TSP cost = " << ham_solver->TravelingSalesmanCost();
LOG(INFO) << name << " TSP path = "
<< PathToString(ham_solver->TravelingSalesmanPath());
LOG(INFO) << name << " Hamiltonian path cost = "
<< ham_solver->HamiltonianCost(best_end_node);
LOG(INFO) << name << " Hamiltonian path = "
<< PathToString(ham_solver->HamiltonianPath(best_end_node));
}
// Gr17 as taken from TSPLIB:
// http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
// Only the lower half of the distance matrix is given. This explains the
// filling of the cost matrix, which is a bit more complicated than usual.
TEST(HamiltonianPathTest, Gr17) {
const int kGr17Data[] = {
0, 633, 0, 257, 390, 0, 91, 661, 228, 0, 412, 227, 169, 383,
0, 150, 488, 112, 120, 267, 0, 80, 572, 196, 77, 351, 63, 0,
134, 530, 154, 105, 309, 34, 29, 0, 259, 555, 372, 175, 338, 264,
232, 249, 0, 505, 289, 262, 476, 196, 360, 444, 402, 495, 0, 353,
282, 110, 324, 61, 208, 292, 250, 352, 154, 0, 324, 638, 437, 240,
421, 329, 297, 314, 95, 578, 435, 0, 70, 567, 191, 27, 346, 83,
47, 68, 189, 439, 287, 254, 0, 211, 466, 74, 182, 243, 105, 150,
108, 326, 336, 184, 391, 145, 0, 268, 420, 53, 239, 199, 123, 207,
165, 383, 240, 140, 448, 202, 57, 0, 246, 745, 472, 237, 528, 364,
332, 349, 202, 685, 542, 157, 289, 426, 483, 0, 121, 518, 142, 84,
297, 35, 29, 36, 236, 390, 238, 301, 55, 96, 153, 336, 0};
const int kGr17Size = 17; // this is the size of the cost matrix for gr17
std::vector<std::vector<int>> cost_mat(kGr17Size);
for (int i = 0; i < kGr17Size; ++i) {
cost_mat[i].resize(kGr17Size);
}
int col = 0;
int row = 0;
for (int i = 0; i < ABSL_ARRAYSIZE(kGr17Data); ++i) {
cost_mat[row][col] = kGr17Data[i];
cost_mat[col][row] = kGr17Data[i];
++col;
if (col > row) {
col = 0;
++row;
}
}
HamiltonianPathSolver<int, std::vector<std::vector<int>>> ham_solver(
cost_mat);
EXPECT_TRUE(ham_solver.IsRobust());
ComputeAndShow("Gr17", &ham_solver);
EXPECT_EQ(2085, ham_solver.TravelingSalesmanCost());
EXPECT_EQ("0 15 11 8 4 1 9 10 2 14 13 16 5 7 6 12 3 0 ",
PathToString(ham_solver.TravelingSalesmanPath()));
int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(1707, ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ("0 15 11 8 3 12 6 7 5 16 13 14 2 10 4 9 1 ",
PathToString(ham_solver.HamiltonianPath(best_end_node)));
PruningHamiltonianSolver<int, std::vector<std::vector<int>>> prune_solver(
cost_mat);
EXPECT_EQ(1707, prune_solver.HamiltonianCost(best_end_node));
}
// Gr24 as taken from TSPLIB:
// http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
// Only the lower half of the distance matrix is given. This explains the
// filling of the cost matrix, which is a bit more complicated than usual.
// Currently disabled to speed up test. Can be run with
// --gunit_also_run_disabled_tests.
TEST(HamiltonianPathTest, DISABLED_Gr24) {
const int kGr24Data[] = {
0, 257, 0, 187, 196, 0, 91, 228, 158, 0, 150, 112, 96, 120, 0,
80, 196, 88, 77, 63, 0, 130, 167, 59, 101, 56, 25, 0, 134, 154,
63, 105, 34, 29, 22, 0, 243, 209, 286, 159, 190, 216, 229, 225, 0,
185, 86, 124, 156, 40, 124, 95, 82, 207, 0, 214, 223, 49, 185, 123,
115, 86, 90, 313, 151, 0, 70, 191, 121, 27, 83, 47, 64, 68, 173,
119, 148, 0, 272, 180, 315, 188, 193, 245, 258, 228, 29, 159, 342, 209,
0, 219, 83, 172, 149, 79, 139, 134, 112, 126, 62, 199, 153, 97, 0,
293, 50, 232, 264, 148, 232, 203, 190, 248, 122, 259, 227, 219, 134, 0,
54, 219, 92, 82, 119, 31, 43, 58, 238, 147, 84, 53, 267, 170, 255,
0, 211, 74, 81, 182, 105, 150, 121, 108, 310, 37, 160, 145, 196, 99,
125, 173, 0, 290, 139, 98, 261, 144, 176, 164, 136, 389, 116, 147, 224,
275, 178, 154, 190, 79, 0, 268, 53, 138, 239, 123, 207, 178, 165, 367,
86, 187, 202, 227, 130, 68, 230, 57, 86, 0, 261, 43, 200, 232, 98,
200, 171, 131, 166, 90, 227, 195, 137, 69, 82, 223, 90, 176, 90, 0,
175, 128, 76, 146, 32, 76, 47, 30, 222, 56, 103, 109, 225, 104, 164,
99, 57, 112, 114, 134, 0, 250, 99, 89, 221, 105, 189, 160, 147, 349,
76, 138, 184, 235, 138, 114, 212, 39, 40, 46, 136, 96, 0, 192, 228,
235, 108, 119, 165, 178, 154, 71, 136, 262, 110, 74, 96, 264, 187, 182,
261, 239, 165, 151, 221, 0, 121, 142, 99, 84, 35, 29, 42, 36, 220,
70, 126, 55, 249, 104, 178, 60, 96, 175, 153, 146, 47, 135, 169, 0};
const int kGr24Size = 24; // this is the size of the cost matrix for gr24
std::vector<std::vector<int>> cost_mat(kGr24Size);
for (int i = 0; i < kGr24Size; ++i) {
cost_mat[i].resize(kGr24Size);
}
int col = 0;
int row = 0;
for (int i = 0; i < ABSL_ARRAYSIZE(kGr24Data); ++i) {
cost_mat[row][col] = kGr24Data[i];
cost_mat[col][row] = kGr24Data[i];
++col;
if (col > row) {
col = 0;
++row;
}
}
HamiltonianPathSolver<int, std::vector<std::vector<int>>> ham_solver(
cost_mat);
EXPECT_TRUE(ham_solver.IsRobust());
ComputeAndShow("Gr24", &ham_solver);
EXPECT_EQ(1272, ham_solver.TravelingSalesmanCost());
EXPECT_EQ("0 15 10 2 6 5 23 7 20 4 9 16 21 17 18 14 1 19 13 12 8 22 3 11 0 ",
PathToString(ham_solver.TravelingSalesmanPath()));
int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(1165, ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ("0 15 5 23 11 3 22 8 12 13 19 1 14 18 21 17 16 9 4 20 7 6 2 10 ",
PathToString(ham_solver.HamiltonianPath(best_end_node)));
auto cost_lambda = [&cost_mat](int i, int j) { return cost_mat[i][j]; };
auto lambda_ham_solver =
MakeHamiltonianPathSolver<int>(kGr24Size, cost_lambda);
EXPECT_TRUE(lambda_ham_solver.IsRobust());
ComputeAndShow("Gr24", &lambda_ham_solver);
EXPECT_EQ(1272, lambda_ham_solver.TravelingSalesmanCost());
EXPECT_EQ("0 15 10 2 6 5 23 7 20 4 9 16 21 17 18 14 1 19 13 12 8 22 3 11 0 ",
PathToString(lambda_ham_solver.TravelingSalesmanPath()));
best_end_node = lambda_ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(1165, lambda_ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ("0 15 5 23 11 3 22 8 12 13 19 1 14 18 21 17 16 9 4 20 7 6 2 10 ",
PathToString(lambda_ham_solver.HamiltonianPath(best_end_node)));
HamiltonianPathSolver<int, std::function<int(int, int)>> function_ham_solver(
kGr24Size, [&cost_mat](int i, int j) { return cost_mat[i][j]; });
EXPECT_TRUE(function_ham_solver.IsRobust());
ComputeAndShow("Gr24", &function_ham_solver);
EXPECT_EQ(1272, function_ham_solver.TravelingSalesmanCost());
EXPECT_EQ("0 15 10 2 6 5 23 7 20 4 9 16 21 17 18 14 1 19 13 12 8 22 3 11 0 ",
PathToString(function_ham_solver.TravelingSalesmanPath()));
best_end_node = function_ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(1165, function_ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ("0 15 5 23 11 3 22 8 12 13 19 1 14 18 21 17 16 9 4 20 7 6 2 10 ",
PathToString(function_ham_solver.HamiltonianPath(best_end_node)));
}
// This is the geographic distance as defined in TSPLIB.
// It is used here so as to obtain the right value for Ulysses22.
// ToRad is a helper function as defined in TSPLIB.
static double ToRad(double x) {
const double kPi = 3.141592;
const int64_t deg = static_cast<int64_t>(x);
const double min = x - deg;
return kPi * (deg + 5.0 * min / 3.0) / 180.0;
}
static int64_t GeoDistance(double from_lng, double from_lat, double to_lng,
double to_lat) {
const double kTsplibRadius = 6378.388;
const double q1 = cos(ToRad(from_lng) - ToRad(to_lng));
const double q2 = cos(ToRad(from_lat) - ToRad(to_lat));
const double q3 = cos(ToRad(from_lat) + ToRad(to_lat));
return static_cast<int64_t>(
kTsplibRadius * acos(0.5 * ((1.0 + q1) * q2 - (1.0 - q1) * q3)) + 1.0);
}
// Ulysses22 data as taken from TSPLIB.
TEST(HamiltonianPathTest, Ulysses) {
const int kUlyssesTourSize = 22;
const double kLat[kUlyssesTourSize] = {
38.24, 39.57, 40.56, 36.26, 33.48, 37.56, 38.42, 37.52,
41.23, 41.17, 36.08, 38.47, 38.15, 37.51, 35.49, 39.36,
38.09, 36.09, 40.44, 40.33, 40.37, 37.57};
const double kLong[kUlyssesTourSize] = {
20.42, 26.15, 25.32, 23.12, 10.54, 12.19, 13.11, 20.44,
9.10, 13.05, -5.21, 15.13, 15.35, 15.17, 14.32, 19.56,
24.36, 23.00, 13.57, 14.15, 14.23, 22.56};
std::vector<std::vector<double>> cost(kUlyssesTourSize);
for (int i = 0; i < kUlyssesTourSize; ++i) {
cost[i].resize(kUlyssesTourSize);
for (int j = 0; j < kUlyssesTourSize; ++j) {
cost[i][j] = GeoDistance(kLong[i], kLat[i], kLong[j], kLat[j]);
}
// GeoDistance can return != 0 for i == j, we don't want that.
cost[i][i] = 0;
}
HamiltonianPathSolver<double, std::vector<std::vector<double>>> ham_solver(
cost);
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("Ulysses22", &ham_solver);
EXPECT_EQ(7013, ham_solver.TravelingSalesmanCost());
EXPECT_EQ("0 13 12 11 6 5 14 4 10 8 9 18 19 20 15 2 1 16 21 3 17 7 0 ",
PathToString(ham_solver.TravelingSalesmanPath()));
int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(5423, ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ("0 7 17 3 21 16 1 2 15 11 12 13 14 4 5 6 19 20 18 9 8 10 ",
PathToString(ham_solver.HamiltonianPath(best_end_node)));
}
static double Euclidean(double x1, double y1, double x2, double y2) {
const double dx = x1 - x2;
const double dy = y1 - y2;
return sqrt(dx * dx + dy * dy);
}
// Helper function for setting up a cost matrix with perturbation in the case of
// tests on problems with random coordinates. The idea is to increase the cost
// row and column for a given index so as to perturbate the matrix. If the
// increase fits with the precision of computations, the same resulting paths
// must be expected.
void InitEuclideanCosts(int size, std::vector<double> x, std::vector<double> y,
double perturbation,
std::vector<std::vector<double>>* cost) {
cost->resize(size);
for (int i = 0; i < size; ++i) {
(*cost)[i].resize(size);
for (int j = 0; j < size; ++j) {
(*cost)[i][j] = Euclidean(x[i], y[i], x[j], y[j]);
}
}
const int kPerturbationIndex = 5;
if (perturbation != 0.0 && size > kPerturbationIndex) {
for (int j = 0; j < size; ++j) {
(*cost)[kPerturbationIndex][j] += perturbation;
(*cost)[j][kPerturbationIndex] += perturbation;
}
(*cost)[kPerturbationIndex][kPerturbationIndex] = 0.0;
}
}
bool ComparePaths(const std::vector<int>& path1,
const std::vector<int>& path2) {
// Returns true if TSP paths are equal or one is the reverse of the other.
// TSP paths always start and end with 0 (the start node). For example, paths
// (0, 1, 2, 3, 0) and (0, 3, 2, 1, 0) are equivalent, but (0, 1, 2, 3, 0) and
// (0, 2, 3, 1, 0) are not.
if (path1.size() != path2.size()) return false;
int size = path1.size();
bool same_ordering = true;
for (int i = 0; i < size; ++i) {
if (path1[i] != path2[i]) {
same_ordering = false;
break;
}
}
if (same_ordering) return true;
bool reverse_ordering = true;
for (int i = 0; i < size; ++i) {
if (path1[i] != path2[size - i - 1]) {
reverse_ordering = false;
break;
}
}
return reverse_ordering;
}
TEST(HamiltonianPathTest, RandomPaths) {
const int kMinSize = 6;
const int kMaxSize = 20;
std::vector<double> x(kMaxSize);
std::vector<double> y(kMaxSize);
std::mt19937 randomizer(0);
for (int i = 0; i < kMaxSize; ++i) {
x[i] = absl::Uniform(randomizer, 0, 100'000);
y[i] = absl::Uniform(randomizer, 0, 100'000);
}
for (int size = kMinSize; size <= kMaxSize; ++size) {
std::vector<std::vector<double>> cost;
InitEuclideanCosts(size, x, y, 0, &cost);
HamiltonianPathSolver<double, std::vector<std::vector<double>>> ham_solver(
cost);
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("RandomPath", &ham_solver);
std::vector<int> good_path = ham_solver.TravelingSalesmanPath();
InitEuclideanCosts(size, x, y, 1e15, &cost);
ham_solver.ChangeCostMatrix(cost);
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("RandomPath with manageable perturbation", &ham_solver);
EXPECT_TRUE(ComparePaths(good_path, ham_solver.TravelingSalesmanPath()));
InitEuclideanCosts(size, x, y, 1e25, &cost);
ham_solver.ChangeCostMatrix(cost);
EXPECT_FALSE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("RandomPath with unmanageable perturbation", &ham_solver);
EXPECT_FALSE(ComparePaths(good_path, ham_solver.TravelingSalesmanPath()));
}
}
TEST(HamiltonianPathTest, EmptyCosts) {
std::vector<std::vector<int>> cost;
HamiltonianPathSolver<int, std::vector<std::vector<int>>> ham_solver(cost);
int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(0, ham_solver.HamiltonianCost(best_end_node));
EXPECT_EQ(0, ham_solver.TravelingSalesmanCost());
std::vector<int> path = ham_solver.HamiltonianPath(best_end_node);
EXPECT_EQ(0, path[0]);
path = ham_solver.TravelingSalesmanPath();
EXPECT_EQ(0, path[0]);
ham_solver.ChangeCostMatrix(cost);
path = ham_solver.HamiltonianPath(best_end_node);
EXPECT_EQ(0, path[0]);
path = ham_solver.TravelingSalesmanPath();
EXPECT_EQ(0, path[0]);
const int kSize = 10;
cost.resize(kSize);
for (int i = 0; i < kSize; ++i) {
cost[i].resize(kSize);
}
ham_solver.ChangeCostMatrix(cost);
path = ham_solver.TravelingSalesmanPath();
EXPECT_EQ(kSize + 1, path.size());
}
TEST(HamiltonianPathTest, RectangleCosts) {
using Solver = HamiltonianPathSolver<int, std::vector<std::vector<int>>>;
const int kSize = 10;
std::vector<std::vector<int>> cost(kSize);
EXPECT_DEATH(Solver ham_solver(cost), "Matrix must be square.");
}
TEST(HamiltonianPathTest, SmallAsymmetricMatrix) {
typedef double TestType;
const int kAsymmetricMatrixSize = 3;
TestType AsymmetricMatrix[kAsymmetricMatrixSize][kAsymmetricMatrixSize] = {
{0, 511, 439}, {1067, 0, 1506}, {449, 960, 0}};
std::vector<std::vector<TestType>> cost(kAsymmetricMatrixSize);
for (int row = 0; row < kAsymmetricMatrixSize; ++row) {
cost[row].resize(kAsymmetricMatrixSize);
for (int col = 0; col < kAsymmetricMatrixSize; ++col) {
cost[row][col] = AsymmetricMatrix[row][col];
}
}
HamiltonianPathSolver<int, std::function<int(int, int)>> ham_solver(
kAsymmetricMatrixSize, [&cost](int i, int j) { return cost[i][j]; });
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("Small asymmetric matrix", &ham_solver);
}
int Card(int set) {
int c = 0;
while (set != 0) {
c += (set & 1);
set >>= 1;
}
return c;
}
bool Contains(int set, int i) { return set & (1 << i); }
TEST(HamiltonianPathTest, AsymmetricMatrix) {
typedef double TestType;
const int kAsymmetricMatrixSize = 13;
TestType AsymmetricMatrix[kAsymmetricMatrixSize][kAsymmetricMatrixSize] = {
{0, 357, 511, 611, 667, 819, 1204, 1689, 1842, 2191, 940, 439, 895},
{678, 0, 164, 264, 320, 472, 857, 1342, 1495, 1844, 730, 229, 685},
{1067, 1424, 0, 100, 156, 308, 693, 1178, 1331, 1680, 1096, 1506, 857},
{1263, 1620, 1774, 0, 56, 208, 593, 1078, 1231, 1580, 1531, 1702, 1272},
{1207, 1564, 1718, 505, 0, 152, 537, 1022, 1175, 1524, 1475, 1646, 1216},
{1728, 2085, 2239, 2339, 2395, 0, 385, 870, 1023, 1372, 1572, 2167, 1819},
{1343, 1700, 1854, 1954, 2010, 2162, 0, 485, 638, 987, 1187, 1782, 1434},
{858, 1215, 1369, 1469, 1525, 1677, 2062, 0, 153, 502, 702, 1297, 949},
{705, 1062, 1216, 1316, 1372, 1524, 1909, 2394, 0, 349, 549, 1144, 796},
{356, 713, 867, 967, 1023, 1175, 1560, 2045, 2198, 0, 200, 795, 447},
{156, 513, 667, 767, 823, 975, 1360, 1845, 1998, 2347, 0, 595, 710},
{449, 806, 960, 1060, 1116, 1268, 1653, 2138, 2291, 2452, 501, 0, 456},
{210, 567, 721, 821, 877, 1029, 1414, 1899, 2052, 2401, 719, 649, 0}};
// Iterate on all the subsets of the matrix and check that everything is
// working OK.
for (int subset = 0; subset < (1 << kAsymmetricMatrixSize); ++subset) {
int sub_problem_size = Card(subset);
if (sub_problem_size < 3) continue;
std::vector<std::vector<TestType>> cost(sub_problem_size);
int row = 0;
for (int i = 0; i < kAsymmetricMatrixSize; ++i) {
if (!Contains(subset, i)) continue;
cost[row].resize(sub_problem_size);
int col = 0;
for (int j = 0; j < kAsymmetricMatrixSize; ++j) {
if (!Contains(subset, j)) continue;
cost[row][col] = AsymmetricMatrix[i][j];
col++;
}
row++;
}
HamiltonianPathSolver<TestType, std::vector<std::vector<TestType>>>
ham_solver(cost);
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
const int best_end_node = ham_solver.BestHamiltonianPathEndNode();
std::vector<int> hamiltonian_path =
ham_solver.HamiltonianPath(best_end_node);
if (hamiltonian_path[0] != 0) {
LOG(INFO) << "Sub-problem size : " << sub_problem_size
<< " subset : " << subset;
ComputeAndShow("Asymmetric matrix", &ham_solver);
for (int row = 0; row < cost.size(); ++row) {
for (int col = 0; col < cost[row].size(); ++col) {
absl::PrintF("%g ", cost[row][col]);
}
absl::PrintF("\n");
}
}
CHECK_EQ(0, hamiltonian_path[0]);
}
}
template <typename T>
class HamiltonianPathOverflowTest : public testing::Test {};
typedef testing::Types<int32_t, int64_t> HamiltonianPathOverflowTypes;
TYPED_TEST_SUITE(HamiltonianPathOverflowTest, HamiltonianPathOverflowTypes);
TYPED_TEST(HamiltonianPathOverflowTest, CostsWithOverflow) {
const int kSize = 10;
std::vector<std::vector<TypeParam>> cost(kSize);
for (int i = 0; i < kSize; ++i) {
cost[i].resize(kSize, i == 0 ? std::numeric_limits<TypeParam>::max() : 1);
}
HamiltonianPathSolver<TypeParam, std::function<TypeParam(int, int)>>
ham_solver(kSize, [&cost](int i, int j) { return cost[i][j]; });
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("Overflow matrix", &ham_solver);
EXPECT_EQ(std::numeric_limits<TypeParam>::max(),
ham_solver.TravelingSalesmanCost());
const int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(std::numeric_limits<TypeParam>::max(),
ham_solver.HamiltonianCost(best_end_node));
}
TYPED_TEST(HamiltonianPathOverflowTest, AllMaxCosts) {
const int kSize = 10;
std::vector<std::vector<TypeParam>> cost(kSize);
for (int i = 0; i < kSize; ++i) {
cost[i].resize(kSize, std::numeric_limits<TypeParam>::max());
}
HamiltonianPathSolver<TypeParam, std::function<TypeParam(int, int)>>
ham_solver(kSize, [&cost](int i, int j) { return cost[i][j]; });
EXPECT_TRUE(ham_solver.IsRobust());
EXPECT_TRUE(ham_solver.VerifiesTriangleInequality());
ComputeAndShow("Overflow matrix", &ham_solver);
EXPECT_EQ(std::numeric_limits<TypeParam>::max(),
ham_solver.TravelingSalesmanCost());
const int best_end_node = ham_solver.BestHamiltonianPathEndNode();
EXPECT_EQ(std::numeric_limits<TypeParam>::max(),
ham_solver.HamiltonianCost(best_end_node));
}
} // namespace operations_research