-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathclone_model_sample_sat.py
71 lines (55 loc) · 1.94 KB
/
clone_model_sample_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
# Copyright 2010-2025 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Showcases deep copying of a model."""
# [START program]
from ortools.sat.python import cp_model
def clone_model_sample_sat():
"""Showcases cloning a model."""
# Creates the model.
# [START model]
model = cp_model.CpModel()
# [END model]
# Creates the variables.
# [START variables]
num_vals = 3
x = model.new_int_var(0, num_vals - 1, "x")
y = model.new_int_var(0, num_vals - 1, "y")
z = model.new_int_var(0, num_vals - 1, "z")
# [END variables]
# Creates the constraints.
# [START constraints]
model.add(x != y)
# [END constraints]
# [START objective]
model.maximize(x + 2 * y + 3 * z)
# [END objective]
# Creates a solver and solves.
# [START solve]
solver = cp_model.CpSolver()
status = solver.solve(model)
# [END solve]
if status == cp_model.OPTIMAL:
print("Optimal value of the original model: {}".format(solver.objective_value))
# Clones the model.
# [START clone]
copy = model.clone()
copy_x = copy.get_int_var_from_proto_index(x.index)
copy_y = copy.get_int_var_from_proto_index(y.index)
copy.add(copy_x + copy_y <= 1)
# [END clone]
status = solver.solve(copy)
if status == cp_model.OPTIMAL:
print("Optimal value of the modified model: {}".format(solver.objective_value))
clone_model_sample_sat()
# [END program]