-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
# Copyright 2023 The SeqIO Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Microbenchmarks for SeqIO preprocessors functions.""" | ||
|
||
import os | ||
|
||
import google_benchmark | ||
from seqio import dataset_providers | ||
from seqio import feature_converters | ||
from seqio import preprocessors | ||
from seqio import test_utils | ||
from seqio import vocabularies | ||
import tensorflow.compat.v2 as tf | ||
|
||
|
||
Feature = dataset_providers.Feature | ||
|
||
_TEST_DIR = os.path.join( | ||
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'test_data' | ||
) | ||
_SENTENCEPIECE_VOCAB = vocabularies.SentencePieceVocabulary( | ||
os.path.join(_TEST_DIR, 'sentencepiece', 'sentencepiece.model') | ||
) | ||
_OUTPUT_FEATURES = { | ||
'prefix': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'suffix': Feature(_SENTENCEPIECE_VOCAB, add_eos=False), | ||
} | ||
|
||
|
||
@google_benchmark.register | ||
def rekey(state): | ||
og_dataset = tf.data.Dataset.from_tensors( | ||
{'text': 'That is good.', 'other': 'That is bad.'} | ||
) | ||
while state: | ||
_ = preprocessors.rekey(og_dataset, {'inputs': 'other', 'targets': 'text'}) | ||
|
||
|
||
@google_benchmark.register | ||
def tokenize(state): | ||
og_dataset = tf.data.Dataset.from_tensors( | ||
{'prefix': 'This is', 'suffix': 'a test.'} | ||
) | ||
while state: | ||
preprocessors.tokenize(og_dataset, output_features=_OUTPUT_FEATURES) | ||
|
||
|
||
@google_benchmark.register | ||
def tokenize_3_rank(state): | ||
og_dataset = tf.data.Dataset.from_tensors({ | ||
'prefix': tf.ragged.constant( | ||
[[['a', 'b'], ['c']], [['d', 'e'], ['f']], [['g', 'h'], ['i']]] | ||
), | ||
'suffix': tf.ragged.constant( | ||
[[['j'], ['k', 'l', 'm']], [['n'], ['o', 'p']]] | ||
), | ||
}) | ||
while state: | ||
preprocessors.tokenize(og_dataset, output_features=_OUTPUT_FEATURES) | ||
|
||
|
||
@google_benchmark.register | ||
def tokenize_and_append_eos(state): | ||
og_dataset = tf.data.Dataset.from_tensors( | ||
{'prefix': 'This is', 'suffix': 'a test.'} | ||
) | ||
while state: | ||
preprocessors.tokenize_and_append_eos( | ||
og_dataset, output_features=_OUTPUT_FEATURES | ||
) | ||
|
||
|
||
@google_benchmark.register | ||
def append_eos(state): | ||
"""Microbenchmark for appending EOS.""" | ||
og_dataset = tf.data.Dataset.from_tensors({ | ||
'inputs': [1, 2, 3], | ||
'targets': [4, 5, 6, 7], | ||
'arrows': [8, 9, 10, 11], | ||
'strings': [[14, 15], [16, 17], [18, 19]], | ||
'feathers': tf.ragged.constant([[20, 21], [], [22, 23, 24, 25, 26]]), | ||
'bows': [12, 13], | ||
}) | ||
output_features = { | ||
'inputs': Feature(_SENTENCEPIECE_VOCAB, add_eos=False), | ||
'targets': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'arrows': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'strings': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'feathers': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
} | ||
while state: | ||
_ = preprocessors.append_eos(og_dataset, output_features) | ||
|
||
|
||
@google_benchmark.register | ||
def append_eos_after_trim(state): | ||
"""Microbenchmark for appending EOS after trimming.""" | ||
og_dataset = tf.data.Dataset.from_tensors({ | ||
'inputs': [1, 2, 3], | ||
'targets': [4, 5, 6, 7], | ||
'arrows': [8, 9, 10, 11], | ||
'strings': [[14, 15], [16, 17], [18, 19]], | ||
'feathers': tf.ragged.constant([[20, 21], [], [22, 23, 24, 25, 26]]), | ||
'bows': [12, 13], | ||
}) | ||
output_features = { | ||
'inputs': Feature(_SENTENCEPIECE_VOCAB, add_eos=False), | ||
'targets': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'arrows': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'strings': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
'feathers': Feature(_SENTENCEPIECE_VOCAB, add_eos=True), | ||
} | ||
sequence_length = { | ||
'inputs': 4, | ||
'targets': 3, | ||
'arrows': 5, | ||
'strings': 3, | ||
'feathers': 4, | ||
} | ||
while state: | ||
_ = preprocessors.append_eos_after_trim( | ||
og_dataset, | ||
output_features=output_features, | ||
sequence_length=sequence_length, | ||
) | ||
|
||
|
||
@google_benchmark.register | ||
def truncate_inputs_left(state): | ||
og_dataset = tf.data.Dataset.from_tensors({ | ||
'inputs': [1, 2, 3], | ||
'targets': [4, 5, 6, 7], | ||
}) | ||
sequence_length = {'inputs': 2, 'targets': 4} | ||
while state: | ||
_ = preprocessors.truncate_inputs_left(og_dataset, sequence_length) | ||
|
||
|
||
@google_benchmark.register | ||
def apply_feature_converter(state): | ||
"""Microbenchmark for applying feature converter.""" | ||
x = {'inputs': [8, 7, 1, 0], 'targets': [4, 1, 0], 'redundant_feature': [0]} | ||
ds = test_utils.create_default_dataset( | ||
[x], feature_names=('inputs', 'targets', 'redundant_feature') | ||
) | ||
sequence_length = {'inputs': 8, 'targets': 7} | ||
feature_converter = feature_converters.EncDecFeatureConverter() | ||
while state: | ||
_ = preprocessors.apply_feature_converter( | ||
ds, sequence_length=sequence_length, feature_converter=feature_converter | ||
) | ||
|
||
|
||
# TODO(b/315985098): Ask mishragaurav@ for a good example and create a test. | ||
# @google_benchmark.register | ||
# def hash_and_tile_subtask_id(state): | ||
# og_dataset = tf.data.Dataset.from_tensors({ | ||
# 'inputs': 'This is', | ||
# 'targets': 'a test.', | ||
# 'provenance/task': 'test_task_name', | ||
# }) | ||
# while state: | ||
# _ = preprocessors.hash_and_tile_subtask_id(og_dataset) | ||
|
||
|
||
@google_benchmark.register | ||
def preprocess_tensorflow_examples(state): | ||
og_dataset = tf.data.Dataset.from_tensors({'text': 'Hello', 'label': 'World'}) | ||
while state: | ||
_ = preprocessors.preprocess_tensorflow_examples( | ||
og_dataset, 'Input: {text}', 'Output: {label}' | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
google_benchmark.main() |