Skip to content

Latest commit

 

History

History
50 lines (38 loc) · 1.91 KB

README.md

File metadata and controls

50 lines (38 loc) · 1.91 KB

SNLP Fact Checker

Goal

Given a list of sentences test the correctness of each sentence

Method Overview

  • Extract Subject, Relation, Object triples from the input sentence
  • Find Wikipedia article of the extracted Subject
  • Parse Wikipedia Infobox of the Subject to extract Subject, Releation, Object triples
  • Compare Wikipedia triples against the input triples
  • Generate ttl file of results

Example

  • Input:
3347316	Nobel Peace Prize is Henry Dunant's honour.
  • Subject: "Henry Dunant" Object: "Nobel Peace Prize" Relation: "AWARD"
  • Related Wikipedia article: en.wikipedia.org/wiki/Henry_Dunant
  • Infobox:

alt text

  • Triples extracted from Wikipedia:

    1. "Henry Dunant", "BORN_IN", "Geneva, Switzerland"
    2. "Henry Dunant", "DIE_IN", "Heiden, Switzerland"
    3. "Henry Dunant", "AWARD", "Nobel Peace Prize"
  • Comparing Input triple against Wikipedia triples yields the fact "Henry Dunant", "AWARD", "Nobel Peace Prize" is correct

  • Output 1.0 for this sentence

  • Output example

<http://swc2017.aksw.org/task2/dataset/3347316><http://swc2017.aksw.org/hasTruthValue>"1.0"^^<http://www.w3.org/2001/XMLSchema#double> .

Running the application

  • create a folder called data and put test.tsv file in this folder
  • set VM arguments as follows: -Xmx3060m -Dfile.encoding=UTF-8
  • run Main file de.upb.snlp.scm.Main
  • result.ttl file will be created in data folder
  • use conf.properties file to manage configuration (NER classifiers should be downloaded from nlp.stanford.edu)

Presentation

Presentation of the process

License

MIT