-
-
Notifications
You must be signed in to change notification settings - Fork 333
/
playground.py
413 lines (327 loc) · 22.6 KB
/
playground.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import time
import os
from collections import defaultdict
import enum
import torch
import scipy.sparse as sp
from scipy.stats import entropy
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import numpy as np
import igraph as ig
from utils.data_loading import normalize_features_sparse, normalize_features_dense, pickle_save, pickle_read, load_graph_data
from utils.constants import CORA_PATH, BINARIES_PATH, DatasetType, LayerType, DATA_DIR_PATH, cora_label_to_color_map, VisualizationType
from utils.visualizations import draw_entropy_histogram
from models.definitions.GAT import GAT
from utils.utils import print_model_metadata, convert_adj_to_edge_index, name_to_layer_type
from training_script_cora import train_gat_cora, get_training_args
def profile_sparse_matrix_formats(node_features_csr):
"""
Shows the benefit of using CORRECT sparse formats during processing. Results:
CSR >> LIL >> dense format, CSR is ~2x faster than LIL and ~8x faster than dense format.
Official GAT and GCN implementations used LIL. In this particular case it doesn't matter that much,
since it only takes a couple of milliseconds to process Cora, but it's good to be aware of advantages that
different sparse formats bring to the table.
Note: CSR is the fastest format for the operations used in normalize features out of all scipy sparse formats.
Note2: There are more precise timing functions out there but I believe this one is good enough for my purpose.
"""
assert sp.isspmatrix_csr(node_features_csr), f'Expected scipy matrix in CSR format, got {type(node_features_csr)}.'
num_simulation_iterations = 1000
# You can also use: tocoo(), todok(), tocsc(), todia(), tobsr(), check out data_loading.py's header for more details
node_features_lil = node_features_csr.tolil()
node_features_dense = node_features_csr.todense()
ts = time.time()
for i in range(num_simulation_iterations): # LIL
_ = normalize_features_sparse(node_features_lil)
print(f'time elapsed, LIL = {(time.time() - ts) / num_simulation_iterations}')
ts = time.time()
for i in range(num_simulation_iterations): # CSR
_ = normalize_features_sparse(node_features_csr)
print(f'time elapsed, CSR = {(time.time() - ts) / num_simulation_iterations}')
ts = time.time()
for i in range(num_simulation_iterations): # dense
_ = normalize_features_dense(node_features_dense)
print(f'time elapsed, dense = {(time.time() - ts) / num_simulation_iterations}')
def to_GBs(memory_in_bytes): # beautify memory output - helper function
return f'{memory_in_bytes / 2**30:.2f} GBs'
def profile_gat_implementations(skip_if_profiling_info_cached=False, store_cache=False):
"""
Currently for 500 epochs of GAT training the time and memory consumption are (on my machine - RTX 2080):
* implementation 1 (IMP1): time ~ 17 seconds, max memory allocated = 1.5 GB and reserved = 1.55 GB
* implementation 2 (IMP2): time = 15.5 seconds, max memory allocated = 1.4 GB and reserved = 1.55 GB
* implementation 3 (IMP3): time = 3.5 seconds, max memory allocated = 0.05 GB and reserved = 1.55 GB
Note: Profiling is done on Cora since the training is faster and most people will have enough VRAM to handle it.
"""
num_of_profiling_loops = 20
mem_profiling_dump_filepath = os.path.join(DATA_DIR_PATH, 'memory.dict')
time_profiling_dump_filepath = os.path.join(DATA_DIR_PATH, 'timing.dict')
training_config = get_training_args()
training_config['num_of_epochs'] = 500 # IMP1 and IMP2 take more time so better to drop this one lower
training_config['should_test'] = False # just measure training and validation loops
training_config['should_visualize'] = False # chart popup would block the simulation
training_config['enable_tensorboard'] = False # no need to include this one
training_config['console_log_freq'] = None # same here
training_config['checkpoint_freq'] = None # and here ^^
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
available_gpu_memory = torch.cuda.get_device_properties(device).total_memory
print(f'Available memory on default GPU: {to_GBs(available_gpu_memory)}')
else:
print('GPU not available. :(')
# Check whether we have memory and timing info already stored in data directory
cache_exists = os.path.exists(mem_profiling_dump_filepath) and os.path.exists(time_profiling_dump_filepath)
# Small optimization - skip the profiling if we have the info stored already and skipping is enabled
if not (cache_exists and skip_if_profiling_info_cached):
gat_layer_implementations = [layer_type for layer_type in LayerType]
results_time = defaultdict(list)
results_memory = defaultdict(list)
# We need this loop in order to find the average time and memory consumption more robustly
for run_id in range(num_of_profiling_loops):
print(f'Profiling, run_id = {run_id}')
# Iterate over all the available GAT implementations
for gat_layer_imp in gat_layer_implementations:
training_config['layer_type'] = gat_layer_imp # modify the training config so as to use different imp
ts = time.time()
train_gat_cora(training_config) # train and validation
results_time[gat_layer_imp.name].append(time.time()-ts) # collect timing information
# These 2 methods basically query this function: torch.cuda.memory_stats() it contains much more detail.
# Here I just care about the peak memory usage i.e. whether you can train GAT on your device.
# The actual number of GPU bytes needed to store the GPU tensors I use (since the start of the program)
max_memory_allocated = torch.cuda.max_memory_allocated(device)
# The above + caching GPU memory used by PyTorch's caching allocator (since the start of the program)
max_memory_reserved = torch.cuda.max_memory_reserved(device)
# Reset the peaks so that we get correct results for the next GAT implementation. Otherwise, since the
# above methods are measuring the peaks since the start of the program one of the less efficient
# (memory-wise) implementations may eclipse the others.
torch.cuda.reset_peak_memory_stats(device)
results_memory[gat_layer_imp.name].append((max_memory_allocated, max_memory_reserved)) # mem info
if store_cache:
pickle_save(time_profiling_dump_filepath, results_time) # dump into cache files
pickle_save(mem_profiling_dump_filepath, results_memory)
else:
print('*' * 50)
print('Using cached profiling information!')
print('*' * 50)
results_time = pickle_read(time_profiling_dump_filepath)
results_memory = pickle_read(mem_profiling_dump_filepath)
# Print the results
for gat_layer_imp in LayerType:
imp_name = gat_layer_imp.name
print('*' * 20)
print(f'{imp_name} GAT training.')
print(f'Layer type = {gat_layer_imp.name}, training duration = {np.mean(results_time[imp_name]):.2f} [s]')
max_memory_allocated = np.mean([mem_tuple[0] for mem_tuple in results_memory[imp_name]])
max_memory_reserved = np.mean([mem_tuple[1] for mem_tuple in results_memory[imp_name]])
print(f'Max mem allocated = {to_GBs(max_memory_allocated)}, max mem reserved = {to_GBs(max_memory_reserved)}.')
def visualize_graph_dataset(dataset_name):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # checking whether you have a GPU
config = {
'dataset_name': dataset_name, # Cora or PPI
'layer_type': LayerType.IMP3, # don't care, but it's needed for load_graph_data function to work
'should_visualize': True, # visualize the dataset
'ppi_load_test_only': True # only used for PPI, let's just load the test graphs
}
load_graph_data(config, device)
def visualize_gat_properties(model_name=r'gat_000000.pth', dataset_name=DatasetType.CORA.name, visualization_type=VisualizationType.ATTENTION):
"""
Notes on t-SNE:
Check out this one for more intuition on how to tune t-SNE: https://distill.pub/2016/misread-tsne/
If you think it'd be useful for me to implement t-SNE as well and explain how every single detail works
open up an issue or DM me on social media! <3
Note: I also tried using UMAP but it doesn't provide any more insight than t-SNE.
(additional con: it has a lot of dependencies if you want to use their plotting functionality)
"""
# I tried visualizing PPI's 2D embeddings without any label/color information but it's not informative
if dataset_name == DatasetType.PPI.name and visualization_type == VisualizationType.EMBEDDINGS:
print(f"{dataset_name} is a multi-label dataset - embeddings are thus not supported.")
return
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # checking whether you have a GPU, I hope so!
config = {
'dataset_name': dataset_name,
'layer_type': LayerType.IMP3,
'should_visualize': False, # don't visualize the dataset
'batch_size': 2, # used only for PPI
'ppi_load_test_only': True # used only for PPI (optimization, we're loading only test graphs)
}
# Step 1: Prepare the data
if dataset_name == DatasetType.CORA.name:
node_features, node_labels, topology, _, _, _ = load_graph_data(config, device)
else:
data_loader_test = load_graph_data(config, device)
node_features, node_labels, topology = next(iter(data_loader_test))
node_features = node_features.to(device) # need to explicitly push them to GPU since PPI eats up a lot of VRAM
node_labels = node_labels.to(device)
topology = topology.to(device)
# Step 2: Prepare the model
model_path = os.path.join(BINARIES_PATH, model_name)
model_state = torch.load(model_path)
gat = GAT(
num_of_layers=model_state['num_of_layers'],
num_heads_per_layer=model_state['num_heads_per_layer'],
num_features_per_layer=model_state['num_features_per_layer'],
add_skip_connection=model_state['add_skip_connection'],
bias=model_state['bias'],
dropout=model_state['dropout'],
layer_type=name_to_layer_type(model_state['layer_type']),
log_attention_weights=True
).to(device)
print_model_metadata(model_state)
assert model_state['dataset_name'].lower() == dataset_name.lower(), \
f"The model was trained on {model_state['dataset_name']} but you're calling it on {dataset_name}."
gat.load_state_dict(model_state["state_dict"], strict=True)
gat.eval() # some layers like nn.Dropout behave differently in train vs eval mode so this part is important
# Step 3: Calculate the things we'll need for different visualization types (attention, scores, edge_index)
# This context manager is important (and you'll often see it), otherwise PyTorch will eat much more memory.
# It would be saving activations for backprop but we are not going to do any model training just the prediction.
with torch.no_grad():
# Step 3: Run predictions and collect the high dimensional data
all_nodes_unnormalized_scores, _ = gat((node_features, topology)) # shape = (N, num of classes)
all_nodes_unnormalized_scores = all_nodes_unnormalized_scores.cpu().numpy()
# We'll need the edge index in different for multiple visualization types
if config['layer_type'] == LayerType.IMP3: # imp 3 works with edge index while others work with adjacency info
edge_index = topology
else:
edge_index = convert_adj_to_edge_index(topology)
# Step 4: Perform a specific visualization
if visualization_type == VisualizationType.ATTENTION:
# The number of nodes for which we want to visualize their attention over neighboring nodes
# (2x this actually as we add nodes with highest degree + random nodes)
num_nodes_of_interest = 4 # 4 is an arbitrary number you can play with these numbers
head_to_visualize = 0 # plot attention from this multi-head attention's head
gat_layer_id = 0 # plot attention from this GAT layer
if dataset_name == DatasetType.PPI.name and gat_layer_id != 0:
print(f'Attention visualization for {dataset_name} is only available for the first layer.')
return
# Build up the complete graph
# node_features shape = (N, FIN), where N is the number of nodes and FIN number of input features
total_num_of_nodes = len(node_features)
complete_graph = ig.Graph()
complete_graph.add_vertices(total_num_of_nodes) # igraph creates nodes with ids [0, total_num_of_nodes - 1]
edge_index_tuples = list(zip(edge_index[0, :], edge_index[1, :])) # igraph requires this format
complete_graph.add_edges(edge_index_tuples)
# Pick the target nodes to plot (nodes with highest degree + random nodes)
# Note: there could be an overlap between random nodes and nodes with highest degree - but highly unlikely
nodes_of_interest_ids = np.argpartition(complete_graph.degree(), -num_nodes_of_interest)[-num_nodes_of_interest:]
random_node_ids = np.random.randint(low=0, high=total_num_of_nodes, size=num_nodes_of_interest)
nodes_of_interest_ids = np.append(nodes_of_interest_ids, random_node_ids)
np.random.shuffle(nodes_of_interest_ids)
target_node_ids = edge_index[1]
source_nodes = edge_index[0]
for target_node_id in nodes_of_interest_ids:
# Step 1: Find the neighboring nodes to the target node
# Note: self edges are included so the target node is it's own neighbor (Alexandro yo soy tu madre)
src_nodes_indices = torch.eq(target_node_ids, target_node_id)
source_node_ids = source_nodes[src_nodes_indices].cpu().numpy()
size_of_neighborhood = len(source_node_ids)
# Step 2: Fetch their labels
labels = node_labels[source_node_ids].cpu().numpy()
# Step 3: Fetch the attention weights for edges (attention is logged during GAT's forward pass above)
# attention shape = (N, NH, 1) -> (N, NH) - we just squeeze the last dim it's superfluous
all_attention_weights = gat.gat_net[gat_layer_id].attention_weights.squeeze(dim=-1)
attention_weights = all_attention_weights[src_nodes_indices, head_to_visualize].cpu().numpy()
# This part shows that for CORA what GAT learns is pretty much constant attention weights! Like in GCN!
# On the other hand PPI's attention pattern is much less uniform.
print(f'Max attention weight = {np.max(attention_weights)} and min = {np.min(attention_weights)}')
attention_weights /= np.max(attention_weights) # rescale the biggest weight to 1 for nicer plotting
# Build up the neighborhood graph whose attention we want to visualize
# igraph constraint - it works with contiguous range of ids so we map e.g. node 497 to 0, 12 to 1, etc.
id_to_igraph_id = dict(zip(source_node_ids, range(len(source_node_ids))))
ig_graph = ig.Graph()
ig_graph.add_vertices(size_of_neighborhood)
ig_graph.add_edges([(id_to_igraph_id[neighbor], id_to_igraph_id[target_node_id]) for neighbor in source_node_ids])
# Prepare the visualization settings dictionary and plot
visual_style = {
"edge_width": attention_weights, # make edges as thick as the corresponding attention weight
"layout": ig_graph.layout_reingold_tilford_circular() # layout for tree-like graphs
}
# This is the only part that's Cora specific as Cora has 7 labels
if dataset_name.lower() == DatasetType.CORA.name.lower():
visual_style["vertex_color"] = [cora_label_to_color_map[label] for label in labels]
else:
print('Add custom color scheme for your specific dataset. Using igraph default coloring.')
ig.plot(ig_graph, **visual_style)
elif visualization_type == VisualizationType.EMBEDDINGS: # visualize embeddings (using t-SNE)
node_labels = node_labels.cpu().numpy()
num_classes = len(set(node_labels))
# Feel free to experiment with perplexity it's arguable the most important parameter of t-SNE and it basically
# controls the standard deviation of Gaussians i.e. the size of the neighborhoods in high dim (original) space.
# Simply put the goal of t-SNE is to minimize the KL-divergence between joint Gaussian distribution fit over
# high dim points and between the t-Student distribution fit over low dimension points (the ones we're plotting)
# Intuitively, by doing this, we preserve the similarities (relationships) between the high and low dim points.
# This (probably) won't make much sense if you're not already familiar with t-SNE, God knows I've tried. :P
t_sne_embeddings = TSNE(n_components=2, perplexity=30, method='barnes_hut').fit_transform(all_nodes_unnormalized_scores)
for class_id in range(num_classes):
# We extract the points whose true label equals class_id and we color them in the same way, hopefully
# they'll be clustered together on the 2D chart - that would mean that GAT has learned good representations!
plt.scatter(t_sne_embeddings[node_labels == class_id, 0], t_sne_embeddings[node_labels == class_id, 1], s=20, color=cora_label_to_color_map[class_id], edgecolors='black', linewidths=0.2)
plt.show()
# We want our local probability distributions (attention weights over the neighborhoods) to be
# non-uniform because that means that GAT is learning a useful pattern. Entropy histograms help us visualize
# how different those neighborhood distributions are from the uniform distribution (constant attention).
# If the GAT is learning const attention we could well be using GCN or some even simpler models.
elif visualization_type == VisualizationType.ENTROPY:
num_heads_per_layer = [layer.num_of_heads for layer in gat.gat_net]
num_layers = len(num_heads_per_layer)
num_of_nodes = len(node_features)
target_node_ids = edge_index[1].cpu().numpy()
# For every GAT layer and for every GAT attention head plot the entropy histogram
for layer_id in range(num_layers):
# Fetch the attention weights for edges (attention is logged during GAT's forward pass above)
# attention shape = (N, NH, 1) -> (N, NH) - we just squeeze the last dim it's superfluous
all_attention_weights = gat.gat_net[layer_id].attention_weights.squeeze(dim=-1).cpu().numpy()
# tmp fix for PPI there are some numerical problems and so most of attention coefficients are 0
# and thus we can't plot entropy histograms
if dataset_name == DatasetType.PPI.name and layer_id > 0:
print(f'Entropy histograms for {dataset_name} are available only for the first layer.')
break
for head_id in range(num_heads_per_layer[layer_id]):
uniform_dist_entropy_list = [] # save the ideal uniform histogram as the reference
neighborhood_entropy_list = []
# This can also be done much more efficiently via scatter_add_ (no for loops)
# pseudo: out.scatter_add_(node_dim, -all_attention_weights * log(all_attention_weights), target_index)
for target_node_id in range(num_of_nodes): # find every the neighborhood for every node in the graph
# These attention weights sum up to 1 by GAT design so we can treat it as a probability distribution
neigborhood_attention = all_attention_weights[target_node_ids == target_node_id].flatten()
# Reference uniform distribution of the same length
ideal_uniform_attention = np.ones(len(neigborhood_attention))/len(neigborhood_attention)
# Calculate the entropy, check out this video if you're not familiar with the concept:
# https://www.youtube.com/watch?v=ErfnhcEV1O8 (Aurélien Géron)
neighborhood_entropy_list.append(entropy(neigborhood_attention, base=2))
uniform_dist_entropy_list.append(entropy(ideal_uniform_attention, base=2))
title = f'{dataset_name} entropy histogram layer={layer_id}, attention head={head_id}'
draw_entropy_histogram(uniform_dist_entropy_list, title, color='orange', uniform_distribution=True)
draw_entropy_histogram(neighborhood_entropy_list, title, color='dodgerblue')
fig = plt.gcf() # get current figure
plt.show()
fig.savefig(os.path.join(DATA_DIR_PATH, f'layer_{layer_id}_head_{head_id}.jpg'))
plt.close()
else:
raise Exception(f'Visualization type {visualization_type} not supported.')
class PLAYGROUND(enum.Enum):
PROFILE_SPARSE = 0,
PROFILE_GAT = 1,
VISUALIZE_DATASET = 2,
VISUALIZE_GAT = 3
if __name__ == '__main__':
#
# Pick the function you want to play with <3
#
playground_fn = PLAYGROUND.VISUALIZE_GAT
if playground_fn == PLAYGROUND.PROFILE_SPARSE:
# shape = (N, F), where N is the number of nodes and F is the number of features
node_features_csr = pickle_read(os.path.join(CORA_PATH, 'node_features.csr'))
profile_sparse_matrix_formats(node_features_csr)
elif playground_fn == PLAYGROUND.PROFILE_GAT:
# Set to True if you want to use the caching mechanism. Once you compute the profiling info it gets stored
# in data/ dir as timing.dict and memory.dict which you can later just load instead of computing again
profile_gat_implementations(skip_if_profiling_info_cached=True, store_cache=True)
elif playground_fn == PLAYGROUND.VISUALIZE_DATASET:
visualize_graph_dataset(dataset_name=DatasetType.CORA.name) # pick between CORA and PPI
elif playground_fn == PLAYGROUND.VISUALIZE_GAT:
visualize_gat_properties(
model_name=r'gat_000000.pth', # set to PPI or CORA model, keep it in sync with the 'dataset_name'
dataset_name=DatasetType.CORA.name, # pick between CORA and PPI
visualization_type=VisualizationType.EMBEDDINGS # pick between attention, t-SNE embeddings and entropy
)
else:
raise Exception(f'Woah, this playground function "{playground_fn}" does not exist.')