forked from qqwweee/keras-yolo3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_annotation.py
30 lines (24 loc) · 1.12 KB
/
voc_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import xml.etree.ElementTree as ET
sets=[('carplate_train'), ('carplate_test')]
classes = ['car', 'plate']
def convert_annotation(image_id, list_file):
in_file = open('CarPlate_dataset/annotations/%s.xml'%(image_id))
tree=ET.parse(in_file)
root = tree.getroot()
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
for image_set in sets:
image_ids = open('CarPlate_dataset/%s.txt'%(image_set)).read().strip().split()
list_file = open('CarPlate_dataset/%s_data.txt'%(image_set), 'w')
for image_id in image_ids:
list_file.write('CarPlate_dataset/images/%s'%(image_id))
convert_annotation(image_id.split('.')[0], list_file)
list_file.write('\n')
list_file.close()