forked from SuyashLakhotia/TextCategorization
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmlp_train.py
110 lines (78 loc) · 3.93 KB
/
mlp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import time
import numpy as np
import tensorflow as tf
import data
import utils
from mlp import MLP
from train import train_and_test
model_name = "mlp"
# Parse Arguments
# ==================================================
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", type=str, default="20 Newsgroups", choices=data.AVAILABLE_DATASETS,
help="Dataset name (default: 20 Newsgroups)")
parser.add_argument("--vocab_size", type=int, default=None,
help="Vocabulary size (default: None [see data.py])")
parser.add_argument("--out", type=str, default="tfidf", choices=["tfidf", "count"],
help="Type of document vectors (default: tfidf)")
parser.add_argument("--layers", type=int, nargs="*",
help="No. of units in fully-connected layers (default: None)")
parser.add_argument("--learning_rate", type=float, default=1e-3, help="Learning rate (default: 1e-3)")
parser.add_argument("--dropout", type=float, default=0.5, help="Dropout keep probability (default: 0.5)")
parser.add_argument("--l2", type=float, default=0.0, help="L2 regularization lambda (default: 0.0)")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size (default: 64)")
parser.add_argument("--epochs", type=int, default=200, help="No. of epochs (default: 200)")
parser.add_argument("--notes", type=str, default=None,
help="Any notes to add to the results.csv output (default: None)")
args = parser.parse_args()
# Parameters
# ==================================================
# Model parameters
layers = args.layers if args.layers is not None else [] # number of units in fully-connected layers
# Training parameters
learning_rate = args.learning_rate # learning rate
batch_size = args.batch_size # batch size
num_epochs = args.epochs # no. of training epochs
# Regularization parameters
dropout_keep_prob = args.dropout # dropout keep probability
l2_reg_lambda = args.l2 # L2 regularization lambda
# Misc. parameters
allow_soft_placement = True # allow device soft device placement i.e. fall back on available device
log_device_placement = False # log placement of operations on devices
# Data Preparation
# ==================================================
train, test = data.load_dataset(args.dataset, out=args.out, vocab_size=args.vocab_size)
x_train = train.data.astype(np.float32)
x_test = test.data.astype(np.float32)
y_train = train.labels
y_test = test.labels
# Print information about the dataset
utils.print_data_info(train, x_train, x_test, y_train, y_test)
# To print for results.csv
data_str = "{{format: '{}', vocab_size: {}}}".format(args.out, len(train.vocab))
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.ConfigProto(allow_soft_placement=allow_soft_placement,
log_device_placement=log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
mlp = MLP(vocab_size=len(train.vocab),
num_classes=len(train.class_names),
layers=layers,
l2_reg_lambda=l2_reg_lambda)
# Convert sparse matrices to arrays
x_train = x_train.toarray()
x_test = x_test.toarray()
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", args.dataset, model_name, timestamp))
# Train and test model
max_accuracy = train_and_test(sess, mlp, x_train, y_train, x_test, y_test, learning_rate, batch_size,
num_epochs, dropout_keep_prob, out_dir)
# Output for results.csv
hyperparams = "{{layers: {}}}".format(layers)
utils.print_result(args.dataset, model_name, max_accuracy, data_str, timestamp, hyperparams, args,
args.notes)