Skip to content

Latest commit

 

History

History
119 lines (86 loc) · 4.45 KB

readme.md

File metadata and controls

119 lines (86 loc) · 4.45 KB

Travis-CI Build Status

Onehot package

Installation

devtools::install_github("https://github.com/Zelazny7/onehot")

Usage

set.seed(100)
test <- data.frame(
  factor    = factor(sample(c(NA, letters[1:3]), 100, T)),
  integer   = as.integer(runif(100) * 10),
  real      = rnorm(100),
  logical   = sample(c(T, F), 100, T),
  character = sample(letters, 100, T),
  stringsAsFactors = FALSE)

head(test)

##   factor integer       real logical character
## 1      a       3 -0.3329234   FALSE         f
## 2      a       3  1.3631137    TRUE         t
## 3      b       0 -0.4691473    TRUE         h
## 4   <NA>       3  0.8428756    TRUE         k
## 5      a       5 -1.4579937   FALSE         k
## 6      a       6 -0.4003059   FALSE         l

Create a onehot object

A onehot object contains information about the data.frame. This is used to transform a data.frame into a onehot encoded matrix. It should be saved to transform future datasets into the same exact layout.

library(onehot)

## Loading required package: Matrix

encoder <- onehot(test)

## Warning: Variables excluded for having levels > max_levels: character

## printe a summary
encoder

## Onehot Specification
## |-   1 Factors  => 4 Indicators 
## |-   3 Numerics => (NA <- -999)

Transforming data.frames

The onehot object has a predict method which may be used to transform a data.frame. Factors are onehot encoded. Character variables are skipped. However calling predict with stringsAsFactors=TRUE will convert character vectors to factors first.

train_data <- predict(encoder, test)
head(train_data)

##      factor_a factor_b factor_c factor_NA integer       real logical
## [1,]        1        0        0         0       3 -0.3329234       0
## [2,]        1        0        0         0       3  1.3631137       1
## [3,]        0        1        0         0       0 -0.4691473       1
## [4,]        0        0        0         1       3  0.8428756       1
## [5,]        1        0        0         0       5 -1.4579937       0
## [6,]        1        0        0         0       6 -0.4003059       0

NA indicator columns

add_NA_factors=TRUE (the default) will create an indicator column for every factor column. Having NAs as a factor level will result in an indicator column being created without using this option.

encoder <- onehot(test, add_NA_factors=TRUE)

## Warning: Variables excluded for having levels > max_levels: character

train_data <- predict(encoder, test)
head(train_data)

##      factor_a factor_b factor_c factor_NA integer       real logical
## [1,]        1        0        0         0       3 -0.3329234       0
## [2,]        1        0        0         0       3  1.3631137       1
## [3,]        0        1        0         0       0 -0.4691473       1
## [4,]        0        0        0         1       3  0.8428756       1
## [5,]        1        0        0         0       5 -1.4579937       0
## [6,]        1        0        0         0       6 -0.4003059       0

Sentinel values for numeric columns

The sentinel=VALUE argument will replace all numeric NAs with the provided value. Some ML algorithms such as randomForest and xgboost do not handle NA values. However, by using sentinel values such algorithms are usually able to separate them with enough decision-tree splits. The default value is -999

Sparse Matrices

onehot also provides support for predicting sparse, column compressed matrices from the Matrix package:

encoder <- onehot(test)

## Warning: Variables excluded for having levels > max_levels: character

train_data <- predict(encoder, test, sparse=TRUE)
head(train_data)

## 6 x 7 sparse Matrix of class "dgCMatrix"
##      factor_a factor_b factor_c factor_NA integer       real logical
## [1,]        1        .        .         .       3 -0.3329234       .
## [2,]        1        .        .         .       3  1.3631137       1
## [3,]        .        1        .         .       . -0.4691473       1
## [4,]        .        .        .         1       3  0.8428756       1
## [5,]        1        .        .         .       5 -1.4579937       .
## [6,]        1        .        .         .       6 -0.4003059       .