-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathmain.py
82 lines (73 loc) · 2.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
'''
code by TaeHwan Jung(@graykode)
Original Paper and repository here : https://github.com/openai/gpt-2
GPT2 Pytorch Model : https://github.com/huggingface/pytorch-pretrained-BERT
'''
import os
import sys
import torch
import random
import argparse
import numpy as np
from GPT2.model import (GPT2LMHeadModel)
from GPT2.utils import load_weight
from GPT2.config import GPT2Config
from GPT2.sample import sample_sequence
from GPT2.encoder import get_encoder
def text_generator(state_dict):
parser = argparse.ArgumentParser()
parser.add_argument("--text", type=str, required=True)
parser.add_argument("--quiet", type=bool, default=False)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top_k", type=int, default=40)
args = parser.parse_args()
if args.quiet is False:
print(args)
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
seed = random.randint(0, 2147483647)
np.random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load Model
enc = get_encoder()
config = GPT2Config()
model = GPT2LMHeadModel(config)
model = load_weight(model, state_dict)
model.to(device)
model.eval()
if args.length == -1:
args.length = config.n_ctx // 2
elif args.length > config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % config.n_ctx)
print(args.text)
context_tokens = enc.encode(args.text)
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=context_tokens if not args.unconditional else None,
start_token=enc.encoder['<|endoftext|>'] if args.unconditional else None,
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:, len(context_tokens):].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
if args.quiet is False:
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
if __name__ == '__main__':
if os.path.exists('gpt2-pytorch_model.bin'):
state_dict = torch.load('gpt2-pytorch_model.bin', map_location='cpu' if not torch.cuda.is_available() else None)
text_generator(state_dict)
else:
print('Please download gpt2-pytorch_model.bin')
sys.exit()