-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver.c
577 lines (462 loc) · 17.7 KB
/
driver.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/*
driver.c - An embedded CNC Controller with rs274/ngc (g-code) support
Driver for Cypress PSoC 5 (CY8CKIT-059)
Part of grblHAL
Copyright (c) 2017-2024 Terje Io
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include "project.h"
#include "serial.h"
#include "driver.h"
#include "grbl/crc.h"
#include "grbl/state_machine.h"
// prescale step counter to 20Mhz (80 / (STEPPER_DRIVER_PRESCALER + 1))
#define STEPPER_DRIVER_PRESCALER 3
#define INTERRUPT_FREQ 1000u
#define SYSTICK_INTERRUPT_VECTOR_NUMBER 15u
static spindle_id_t spindle_id = -1;
static bool spindlePWM = false, IOInitDone = false;
static spindle_pwm_t spindle_pwm = {0};
static axes_signals_t next_step_outbits;
static delay_t delay = { .ms = 1, .callback = NULL }; // NOTE: initial ms set to 1 for "resetting" systick timer on startup
// Interrupt handler prototypes
static void stepper_driver_isr (void);
//static void stepper_pulse_isr (void);
static void limit_isr (void);
static void control_isr (void);
static void systick_isr (void);
static void driver_delay_ms (uint32_t ms, void (*callback)(void))
{
if((delay.ms = ms) > 0) {
DelayTimer_Start();
if(!(delay.callback = callback)) {
while(delay.ms)
grbl.on_execute_delay(state_get());
}
} else if(callback)
callback();
}
// Non-variable spindle
// Start or stop spindle, called from spindle_run() and protocol_execute_realtime()
static void spindleSetStateFixed (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
rpm = rpm; // stop compiler complaining
spindle = spindle;
SpindleOutput_Write(state.value);
}
// Variable spindle
// Set spindle speed. Note: spindle direction must be kept if stopped or restarted
static void spindleSetSpeed (spindle_ptrs_t *spindle, uint_fast16_t pwm_value)
{
if(pwm_value == spindle->context.pwm->off_value) {
if(spindle->context.pwm->settings->flags.enable_rpm_controlled)
SpindleOutput_Write(SpindleOutput_Read() & 0x02);
} else {
if(!(SpindleOutput_Read() & 0x01))
SpindleOutput_Write(SpindleOutput_Read() | 0x01);
SpindlePWM_WriteCompare(pwm_value);
}
}
static uint_fast16_t spindleGetPWM (spindle_ptrs_t *spindle, float rpm)
{
return spindle->context.pwm->compute_value(spindle->context.pwm, rpm, false);
}
// Start or stop spindle, called from spindle_run() and protocol_execute_realtime()
static void spindleSetStateVariable (spindle_ptrs_t *spindle, spindle_state_t state, float rpm)
{
uint32_t new_pwm = spindle_pwm.compute_value(spindle->context.pwm, rpm, false);
if(state.on)
SpindleOutput_Write(state.ccw ? 0x02 : 0x00);
if(!spindle->context.pwm->settings->flags.enable_rpm_controlled) {
if(state.on)
SpindleOutput_Write(state.value);
else
SpindleOutput_Write(SpindleOutput_Read() & 0x02); // Keep direction!
}
spindleSetSpeed(spindle, new_pwm);
}
bool spindleConfig (spindle_ptrs_t *spindle)
{
if(spindle == NULL)
return false;
if((spindlePWM = spindle_precompute_pwm_values(spindle, &spindle_pwm, &settings.pwm_spindle, hal.f_step_timer))) {
SpindlePWM_Start();
SpindlePWM_WritePeriod(spindle_pwm.period);
spindle->set_state = spindleSetStateVariable;
} else
spindle->set_state = spindleSetStateFixed;
return true;
}
// end Variable spindle
static spindle_state_t spindleGetState (spindle_ptrs_t *spindle)
{
return (spindle_state_t)SpindleOutput_Read();
}
// end spindle code
// Enable/disable steppers, called from st_wake_up() and st_go_idle()
static void stepperEnable (axes_signals_t enable, bool hold)
{
StepperEnable_Write(enable.x);
}
// Sets up for a step pulse and forces a stepper driver interrupt, called from st_wake_up()
// NOTE: delay and pulse_time are # of microseconds
static void stepperWakeUp ()
{
/*
if(pulse_delay) {
pulse_time += pulse_delay;
TimerMatchSet(TIMER2_BASE, TIMER_A, pulse_time - pulse_delay);
}
*/
// Enable stepper drivers.
hal.stepper.enable((axes_signals_t){AXES_BITMASK}, false);
StepperTimer_WritePeriod(5000); // dummy
StepperTimer_Enable();
Stepper_Interrupt_SetPending();
// hal.stepper_interrupt_callback();
}
// Sets up stepper driver interrupt timeout, called from stepper_driver_interrupt_handler()
static void stepperCyclesPerTick (uint32_t cycles_per_tick)
{
// StepperTimer_Stop();
// StepperTimer_WriteCounter(cycles_per_tick < (1UL << 24) /*< 65536 (4.1ms @ 16MHz)*/ ? cycles_per_tick : 0xFFFFFF /*Just set the slowest speed possible.*/);
StepperTimer_WritePeriod(cycles_per_tick < (1UL << 24) /*< 65536 (4.1ms @ 16MHz)*/ ? cycles_per_tick : 0xFFFFFF /*Just set the slowest speed possible.*/);
// Control_Reg_1_Write(1);
// Control_Reg_1_Write(0);
// StepperTimer_Enable();
}
// Disables stepper driver interrups, called from st_go_idle()
static void stepperGoIdle (bool clear_signals)
{
StepperTimer_Stop();
if(clear_signals)
StepOutput_Write(0);
}
// Sets stepper direction and pulse pins and starts a step pulse
static void stepperPulseStart (stepper_t *stepper)
{
if(stepper->new_block) {
stepper->new_block = false;
DirOutput_Write(stepper->dir_outbits.value);
}
if(stepper->step_outbits.value)
StepOutput_Write(stepper->step_outbits.value);
}
// Delayed pulse version: sets stepper direction and pulse pins and starts a step pulse with an initial delay.
// TODO: unsupported, to be completed
static void stepperPulseStartDelayed (stepper_t *stepper)
{
if(stepper->new_block) {
stepper->new_block = false;
DirOutput_Write(stepper->dir_outbits.value);
}
if(stepper->step_outbits.value) {
next_step_outbits = stepper->step_outbits; // Store out_bits
//TODO: implement timer for initial delay...
}
}
// Enable limit pins interrupt, called from mc_homing_cycle()
static void limitsEnable (bool on, axes_signals_t homing_cycle)
{
if(on) {
HomingSignals_WriteMask(~homing_cycle.mask);
Homing_Interrupt_Enable();
} else
Homing_Interrupt_Disable();
}
// Returns limit state as a bit-wise uint8 variable. Each bit indicates an axis limit, where
// triggered is 1 and not triggered is 0. Invert mask is applied. Axes are defined by their
// number in bit position, i.e. Z_AXIS is (1<<2) or bit 2, and Y_AXIS is (1<<1) or bit 1.
inline static limit_signals_t limitsGetState()
{
limit_signals_t signals;
memset(&signals, 0, sizeof(limit_signals_t));
signals.min.mask = HomingSignals_Read();
return signals;
}
static control_signals_t systemGetState (void)
{
control_signals_t signals;
signals.value = ControlSignals_Read();
#ifndef NO_SAFETY_DOOR_SUPPORT
signals.safety_door_ajar = Off;
#endif
return signals;
}
// Called by probe_init() and the mc_probe() routines. Sets up the probe pin invert mask to
// appropriately set the pin logic according to setting for normal-high/normal-low operation
// and the probing cycle modes for toward-workpiece/away-from-workpiece.
static void probeConfigure (bool is_probe_away, bool probing)
{
probing = probing;
ProbeInvert_Write(is_probe_away);
}
// Returns the probe connected and triggered pin states.
probe_state_t probeGetState (void)
{
probe_state_t state = {
.connected = On
};
state.triggered = ProbeSignal_Read() != 0;
return state;
}
// Start/stop coolant (and mist if enabled), called by coolant_run() and protocol_execute_realtime()
static void coolantSetState (coolant_state_t mode)
{
CoolantOutput_Write(mode.value & 0x03);
}
static coolant_state_t coolantGetState (void)
{
return (coolant_state_t)CoolantOutput_Read();
}
void eepromPutByte (uint32_t addr, uint8_t new_value)
{
EEPROM_WriteByte(new_value, addr);
}
nvs_transfer_result_t eepromWriteBlock (uint32_t destination, uint8_t *source, uint32_t size, bool with_checksum)
{
uint16_t checksum = calc_checksum(source, size);
for(; size > 0; size--)
EEPROM_WriteByte(*(source++), destination++);
if(size > 0 && with_checksum) {
EEPROM_WriteByte(checksum & 0xFF, destination);
#if NVS_CRC_BYTES > 1
EEPROM_WriteByte(checksum >> 8, ++destination);
#endif
}
return NVS_TransferResult_OK;
}
nvs_transfer_result_t eepromReadBlock (uint8_t *destination, uint32_t source, uint32_t size, bool with_checksum)
{
uint32_t remaining = size;
for(; remaining > 0; remaining--)
*(destination++) = EEPROM_ReadByte(source++);
#if NVS_CRC_BYTES == 1
return with_checksum ? (calc_checksum(destination, size) == EEPROM_ReadByte(source) ? NVS_TransferResult_OK : NVS_TransferResult_Failed) : NVS_TransferResult_OK;
#else
return with_checksum ? (calc_checksum(destination, size) == (EEPROM_ReadByte(source) | (EEPROM_ReadByte(source + 1) << 1) ? NVS_TransferResult_OK : NVS_TransferResult_Failed) : NVS_TransferResult_OK;
#endif
}
// Helper functions for setting/clearing/inverting individual bits atomically (uninterruptable)
static void bitsSetAtomic (volatile uint_fast16_t *ptr, uint_fast16_t bits)
{
CyGlobalIntDisable;
*ptr |= bits;
CyGlobalIntEnable;
}
static uint_fast16_t bitsClearAtomic (volatile uint_fast16_t *ptr, uint_fast16_t bits)
{
CyGlobalIntDisable;
uint_fast16_t prev = *ptr;
*ptr &= ~bits;
CyGlobalIntEnable;
return prev;
}
static uint_fast16_t valueSetAtomic (volatile uint_fast16_t *ptr, uint_fast16_t value)
{
CyGlobalIntDisable;
uint_fast16_t prev = *ptr;
*ptr = value;
CyGlobalIntEnable;
return prev;
}
static void enable_irq (void)
{
CyGlobalIntEnable;
}
static void disable_irq (void)
{
CyGlobalIntDisable;
}
// Callback to inform settings has been changed, called by settings_store_global_setting()
// Used to (re)configure hardware and set up helper variables
void settings_changed (settings_t *settings, settings_changed_flags_t changed)
{
//TODO: disable interrupts while reconfigure?
if(IOInitDone) {
if(changed.spindle) {
spindleConfig(spindle_get_hal(spindle_id, SpindleHAL_Configured));
if(spindle_id == spindle_get_default())
spindle_select(spindle_id);
}
if(hal.driver_cap.step_pulse_delay && settings->steppers.pulse_delay_microseconds > 0.0f) {
// TimerIntRegister(TIMER2_BASE, TIMER_A, stepper_pulse_isr_delayed);
// TimerIntEnable(TIMER2_BASE, TIMER_TIMA_TIMEOUT|TIMER_TIMA_MATCH);
hal.stepper.pulse_start = &stepperPulseStartDelayed;
}
StepPulseClock_SetDivider((uint32_t)(24.0f * settings->steppers.pulse_microseconds));
DirInvert_Write(settings->steppers.dir_invert.mask);
StepInvert_Write(settings->steppers.step_invert.mask);
StepperEnableInvert_Write(settings->steppers.enable_invert.x);
SpindleInvert_Write(settings->pwm_spindle.invert.mask);
CoolantInvert_Write(settings->coolant.invert.mask);
// Homing (limit) inputs
XHome_Write(settings->limits.disable_pullup.x ? 0 : 1);
XHome_SetDriveMode(settings->limits.disable_pullup.x ? XHome_DM_RES_DWN : XHome_DM_RES_UP);
YHome_Write(settings->limits.disable_pullup.y ? 0 : 1);
YHome_SetDriveMode(settings->limits.disable_pullup.y ? YHome_DM_RES_DWN : YHome_DM_RES_UP);
ZHome_Write(settings->limits.disable_pullup.z ? 0 : 1);
ZHome_SetDriveMode(settings->limits.disable_pullup.z ? ZHome_DM_RES_DWN : ZHome_DM_RES_UP);
HomingSignalsInvert_Write(settings->limits.invert.mask);
// Control inputs
Reset_Write(settings->control_disable_pullup.reset ? 0 : 1);
Reset_SetDriveMode(settings->control_disable_pullup.reset ? Reset_DM_RES_DWN : Reset_DM_RES_UP);
FeedHold_Write(settings->control_disable_pullup.feed_hold ? 0 : 1);
FeedHold_SetDriveMode(settings->control_disable_pullup.feed_hold ? FeedHold_DM_RES_DWN : FeedHold_DM_RES_UP);
CycleStart_Write(settings->control_disable_pullup.cycle_start ? 0 : 1);
CycleStart_SetDriveMode(settings->control_disable_pullup.cycle_start ? CycleStart_DM_RES_DWN : CycleStart_DM_RES_UP);
SafetyDoor_Write(settings->control_disable_pullup.safety_door_ajar ? 0 : 1);
SafetyDoor_SetDriveMode(settings->control_disable_pullup.safety_door_ajar ? SafetyDoor_DM_RES_DWN : SafetyDoor_DM_RES_UP);
ControlSignalsInvert_Write(settings->control_invert.mask);
// Probe input
ProbeInvert_Write(settings->probe.disable_probe_pullup ? 0 : 1);
Probe_SetDriveMode(settings->probe.disable_probe_pullup ? Probe_DM_RES_DWN : Probe_DM_RES_UP);
Probe_Write(settings->probe.disable_probe_pullup ? 0 : 1);
}
}
// Initializes MCU peripherals for Grbl use
static bool driver_setup (settings_t *settings)
{
StepPulseClock_Start();
StepperTimer_Init();
Stepper_Interrupt_SetVector(stepper_driver_isr);
Stepper_Interrupt_SetPriority(1);
Stepper_Interrupt_Enable();
Control_Interrupt_StartEx(control_isr);
ControlSignals_InterruptEnable();
Homing_Interrupt_SetVector(limit_isr);
// CyIntSetSysVector(SYSTICK_INTERRUPT_VECTOR_NUMBER, systick_isr);
// SysTick_Config(BCLK__BUS_CLK__HZ / INTERRUPT_FREQ);
DelayTimer_Interrupt_SetVector(systick_isr);
DelayTimer_Interrupt_SetPriority(7);
DelayTimer_Interrupt_Enable();
DelayTimer_Start();
IOInitDone = settings->version.id == 23;
hal.settings_changed(settings, (settings_changed_flags_t){0});
DirOutput_Write(0);
#ifdef HAS_KEYPAD
/*********************
* I2C KeyPad init *
*********************/
I2C_keypad_setup();
#endif
return IOInitDone;
}
// Initialize HAL pointers
// NOTE: Grbl is not yet (configured from EEPROM data), driver_setup() will be called when done
bool driver_init (void)
{
EEPROM_Start();
hal.info = "PSoC 5";
hal.driver_version = "241208";
hal.driver_setup = driver_setup;
hal.f_step_timer = 24000000UL;
hal.rx_buffer_size = RX_BUFFER_SIZE;
hal.delay_ms = driver_delay_ms;
hal.settings_changed = settings_changed;
hal.stepper.wake_up = stepperWakeUp;
hal.stepper.go_idle = stepperGoIdle;
hal.stepper.enable = stepperEnable;
hal.stepper.cycles_per_tick = stepperCyclesPerTick;
hal.stepper.pulse_start = stepperPulseStart;
hal.limits.enable = limitsEnable;
hal.limits.get_state = limitsGetState;
hal.coolant.set_state = coolantSetState;
hal.coolant.get_state = coolantGetState;
hal.probe.get_state = probeGetState;
hal.probe.configure = probeConfigure;
static const spindle_ptrs_t spindle = {
.type = SpindleType_PWM,
.ref_id = SPINDLE_PWM0,
.cap = {
.direction = On,
.variable = On,
.laser = On,
.gpio_controlled = On
},
.config = spindleConfig,
.set_state = spindleSetStateVariable,
.get_state = spindleGetState,
.get_pwm = spindleGetPWM,
.update_pwm = spindleSetSpeed
};
spindle_id = spindle_register(&spindle, "PWM");
hal.control.get_state = systemGetState;
memcpy(&hal.stream, serialInit(), sizeof(io_stream_t));
hal.nvs.type = NVS_EEPROM;
hal.nvs.get_byte = (uint8_t (*)(uint32_t))&EEPROM_ReadByte;
hal.nvs.put_byte = eepromPutByte;
hal.nvs.memcpy_to_nvs = eepromWriteBlock;
hal.nvs.memcpy_from_nvs = eepromReadBlock;
hal.set_bits_atomic = bitsSetAtomic;
hal.clear_bits_atomic = bitsClearAtomic;
hal.set_value_atomic = valueSetAtomic;
hal.irq_enable = enable_irq;
hal.irq_disable = disable_irq;
// driver capabilities, used for announcing and negotiating (with grblHAL) driver functionality
#ifndef NO_SAFETY_DOOR_SUPPORT
hal.signals_cap.safety_door_ajar = On;
#endif
hal.limits_cap = (limit_signals_t){ .min.mask = AXES_BITMASK };
hal.driver_cap.pwm_spindle = On;
hal.coolant_cap.flood = On;
hal.coolant_cap.mist = On;
hal.driver_cap.software_debounce = On;
hal.driver_cap.step_pulse_delay = Off;
hal.driver_cap.amass_level = 3;
hal.driver_cap.control_pull_up = On;
hal.driver_cap.limits_pull_up = On;
hal.driver_cap.probe_pull_up = On;
#include "grbl/plugins_init.h"
// No need to move version check before init.
// Compiler will fail any signature mismatch for existing entries.
return hal.version == 10;
}
/* interrupt handlers */
// Main stepper driver
static void stepper_driver_isr (void)
{
StepperTimer_ReadStatusRegister(); // Clear interrupt
hal.stepper.interrupt_callback();
}
// This interrupt is enabled when Grbl sets the motor port bits to execute
// a step. This ISR resets the motor port after a short period (settings.pulse_microseconds)
// completing one step cycle.
/*
static void stepper_pulse_isr (void)
{
//Stepper_Timer_ReadStatusRegister();
StepOutput_Write(next_step_outbits.value);
}
*/
static void limit_isr (void)
{
hal.limits.interrupt_callback(limitsGetState());
}
static void control_isr (void)
{
control_signals_t signals;
signals.value = ControlSignals_Read();
hal.control.interrupt_callback(signals);
}
// Interrupt handler for 1 ms interval timer
static void systick_isr (void)
{
DelayTimer_ReadStatusRegister();
if(!(--delay.ms)) {
DelayTimer_Stop();
if(delay.callback) {
delay.callback();
delay.callback = NULL;
}
}
}