-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathencoder.c
815 lines (649 loc) · 23.6 KB
/
encoder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*
encoder.c - quadrature encoder plugin
Part of grblHAL
Copyright (c) 2020-2024 Terje Io
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdlib.h>
#include "encoder.h"
#if QEI_ENABLE
#ifdef ARDUINO
#include "../grbl/grbl.h"
#include "../grbl/report.h"
#include "../grbl/protocol.h"
#include "../grbl/nvs_buffer.h"
#else
#include "grbl/grbl.h"
#include "grbl/report.h"
#include "grbl/protocol.h"
#include "grbl/nvs_buffer.h"
#endif
#include <stdio.h>
#include <string.h>
#define MIN(a, b) (((a) > (b)) ? (b) : (a))
typedef bool (*mpg_algo_ptr)(sys_state_t state, axes_signals_t axes);
typedef union {
uint8_t events;
struct {
uint8_t position_changed :1,
zero :1,
lock :1,
reset :1,
scale :1,
stop :1,
unused :2;
};
} mpg_event_t;
typedef union {
uint8_t all;
struct {
uint8_t moving :1,
zero :1,
lock :1,
reset :1,
unused :4;
};
} mpg_flags_t;
typedef struct {
int32_t position;
mpg_event_t event;
mpg_flags_t flags;
uint32_t next_event;
float pos;
float scale_factor;
encoder_t *encoder;
mpg_algo_ptr handler;
} mpg_t;
static char gcode[50];
static int32_t npos[QEI_ENABLE] = {0};
static mpg_t mpg[N_AXIS] = {0};
static mpg_event_t mpg_events[N_AXIS] = {0};
static encoder_t *override_encoder = NULL; // NULL when no Encoder_Universal available
static axes_signals_t mpg_event = {0};
static volatile bool mpg_spin_lock = false;
static on_realtime_report_ptr on_realtime_report = NULL;
static on_execute_realtime_ptr on_execute_realtime = NULL;
static on_report_options_ptr on_report_options;
static nvs_address_t nvs_address;
static encoder_settings_t encoders[QEI_ENABLE];
static uint_fast8_t n_encoder;
static char *append (char *s)
{
while(*s)
s++;
return s;
}
// MPG encoder movement algorithms
// Bind the one to use to the axis MPGs at end of encoder_init(), later this will be made configurable (per axis?)
static bool mpg_move_absolute (sys_state_t state, axes_signals_t axes)
{
static bool is_moving = false;
int32_t delta;
uint32_t velocity = 0;
uint_fast8_t idx = 0;
strcpy(gcode, "G1");
while(axes.mask) {
if(axes.mask & 0x01) {
if((delta = mpg[idx].position - npos[mpg[idx].encoder->id]) != 0) {
float pos_delta = (float)delta * mpg[idx].scale_factor / 100.0f;
mpg[idx].position = npos[idx];
velocity = velocity == 0 ? mpg[idx].encoder->velocity : MIN(mpg[idx].encoder->velocity, velocity);
if(!gc_state.modal.distance_incremental)
mpg[idx].pos += pos_delta;
velocity = velocity == 0 ? mpg[idx].encoder->velocity : MIN(mpg[idx].encoder->velocity, velocity);
sprintf(append(gcode), "%s%.3f", axis_letter[idx], gc_state.modal.distance_incremental ? pos_delta : mpg[idx].pos);
}
}
idx++;
axes.mask >>= 1;
}
if(strlen(gcode) > 2 && velocity > 0) {
sprintf(append(gcode), "F%lu", velocity);
is_moving = grbl.enqueue_gcode(gcode);
#ifdef UART_DEBUG
serialWriteS(gcode);
serialWriteS(" ");
serialWriteS(uitoa(is_moving));
serialWriteS(" ");
serialWriteS(uitoa(delta));
serialWriteS(ASCII_EOL);
#endif
}
return is_moving;
}
static bool mpg_jog_relative (sys_state_t state, axes_signals_t axes)
{
static bool is_moving = false;
int32_t delta;
uint32_t velocity = 0;
uint_fast8_t idx = 0;
strcpy(gcode, "$J=G91");
// serialWriteS(uitoa(mpg[idx].encoder->position));
// serialWriteS(ASCII_EOL);
while(axes.mask) {
if(axes.mask & 0x01) {
if((delta = mpg[idx].position - npos[mpg[idx].encoder->id]) != 0) {
float pos_delta = (float)delta * mpg[idx].scale_factor / 100.0f;
mpg[idx].position = npos[idx];
velocity = velocity == 0 ? mpg[idx].encoder->velocity : MIN(mpg[idx].encoder->velocity, velocity);
sprintf(append(gcode), "%s%.3f", axis_letter[idx], pos_delta);
}
}
idx++;
axes.mask >>= 1;
}
if(strlen(gcode) > 6 && velocity > 0) {
sprintf(append(gcode), "F%lu", velocity);
is_moving = grbl.enqueue_gcode(gcode);
#ifdef UART_DEBUG
serialWriteS(gcode);
serialWriteS(" ");
serialWriteS(uitoa(is_moving));
serialWriteS(ASCII_EOL);
#endif
/*
serialWriteS(itoa(npos[mpg[idx].encoder->id], gcode, 10));
serialWriteS(ASCII_EOL);
*/
}
return is_moving;
}
// End MPG encoder movement algorithms
static inline void reset_override (encoder_mode_t mode)
{
switch(mode) {
case Encoder_FeedRate:
grbl.enqueue_realtime_command(CMD_OVERRIDE_FEED_RESET);
break;
case Encoder_RapidRate:
grbl.enqueue_realtime_command(CMD_OVERRIDE_RAPID_RESET);
break;
case Encoder_Spindle_RPM:
grbl.enqueue_realtime_command(CMD_OVERRIDE_SPINDLE_RESET);
break;
default:
break;
}
}
static void encoder_report_mode (void *data)
{
if(override_encoder) {
switch(override_encoder->mode) {
case Encoder_FeedRate:
hal.stream.write("[MSG:Encoder mode feed rate]" ASCII_EOL);
break;
case Encoder_RapidRate:
hal.stream.write("[MSG:Encoder mode rapid rate]" ASCII_EOL);
break;
case Encoder_Spindle_RPM:
hal.stream.write("[MSG:Encoder mode spindle RPM]" ASCII_EOL);
break;
default:
break;
}
}
}
static void encoder_execute_realtime (sys_state_t state)
{
static uint32_t elapsed = 0;
uint32_t ms = hal.get_elapsed_ticks();
if(ms != elapsed && mpg_event.mask && (state == STATE_IDLE || (state & STATE_JOG))) {
bool move_action = false, stop_action = false;
uint_fast8_t idx = 0;
axes_signals_t event, axes;
#ifdef UART_DEBUG
serialWriteS("+");
#endif
while(mpg_spin_lock);
event.mask = axes.mask = mpg_event.mask;
mpg_event.mask = 0;
for(idx = 0; idx < N_AXIS; idx++)
mpg_events[idx].events = mpg[idx].event.events;
idx = 0;
while(event.mask) {
if(event.mask & 0x01) {
if(mpg_events[idx].zero) {
strcpy(gcode, "G90G10L20P0");
strcat(gcode, axis_letter[idx]);
strcat(gcode, "0");
if(grbl.enqueue_gcode(gcode)) {
mpg[idx].event.zero = Off;
mpg[idx].position = npos[mpg[idx].encoder->id] = mpg[idx].encoder->position = 0;
hal.encoder.reset(mpg[idx].encoder->id);
}
}
if(mpg_events[idx].scale) {
mpg[idx].scale_factor *= 10.0f;
if(mpg[idx].scale_factor > 100.0f)
mpg[idx].scale_factor = 1.0f;
#ifdef UART_DEBUG
serialWriteS("Distance scale: ");
serialWriteS(ftoa(mpg[idx].scale_factor, 0));
serialWriteS(ASCII_EOL);
#endif
}
if(mpg_events[idx].stop) {
if((stop_action = mpg[idx].flags.moving && (state & STATE_JOG))) {
grbl.enqueue_realtime_command(CMD_JOG_CANCEL);
#ifdef UART_DEBUG
serialWriteS("Jog cancel");
serialWriteS(ASCII_EOL);
#endif
}
mpg[idx].flags.moving = mpg_events[idx].position_changed = Off;
}
if(mpg_events[idx].position_changed) {
if(!mpg[idx].flags.moving) {
float target[N_AXIS];
system_convert_array_steps_to_mpos(target, sys.position);
mpg[idx].flags.moving = On;
mpg[idx].pos = target[idx] - gc_get_offset(idx, false);
}
move_action = true;
mpg[idx].flags.moving = On;
mpg[idx].next_event += 100;
}
}
mpg[idx].event.events = 0;
idx++;
event.mask >>= 1;
}
if(move_action && !mpg[0].handler(state, axes))
mpg_event.mask |= 0; //axes.mask; // gcode was rejected, restore events
}
elapsed = ms;
on_execute_realtime(state);
}
static void encoder_event (encoder_t *encoder, int32_t position)
{
bool update_position = false;
if(encoder->event.click) {
if(encoder->settings->mode == Encoder_Universal) {
sys.report.encoder = On;
encoder->event.click = Off;
encoder->mode = encoder->mode == Encoder_FeedRate ? Encoder_RapidRate : (encoder->mode == Encoder_RapidRate ? Encoder_Spindle_RPM : Encoder_FeedRate);
protocol_enqueue_foreground_task(encoder_report_mode, NULL); // Output mode change message from foreground process.
} else if(encoder->settings->mode == Encoder_MPG) {
if(++encoder->axis == N_AXIS)
encoder->axis = X_AXIS;
mpg[encoder->axis].position = npos[encoder->id] = encoder->position = 0;
mpg[encoder->axis].event.events = encoder->event.events = 0;
hal.encoder.reset(encoder->id);
}
}
if(encoder->event.position_changed) {
#ifdef UART_DEBUG
itoa(position, gcode, 10);
serialWriteS("Pos: ");
serialWriteS(gcode);
serialWriteS(ASCII_EOL);
#endif
int32_t n_count = (position * 100L) / (int32_t)encoder->settings->cpr;
encoder->event.position_changed = Off;
if(n_count != npos[encoder->id] || encoder->velocity == 0) switch(encoder->mode) {
case Encoder_FeedRate:
update_position = true;
if(n_count < npos[encoder->id]) {
while(npos[encoder->id]-- != n_count)
grbl.enqueue_realtime_command(CMD_OVERRIDE_FEED_FINE_MINUS);
} else {
while(npos[encoder->id]++ != n_count)
grbl.enqueue_realtime_command(CMD_OVERRIDE_FEED_FINE_PLUS);
}
break;
case Encoder_RapidRate:
update_position = abs(position - encoder->position) >= encoder->settings->cpd;
if(update_position) switch(sys.override.rapid_rate) {
case DEFAULT_RAPID_OVERRIDE:
if(position < encoder->position)
grbl.enqueue_realtime_command(CMD_OVERRIDE_RAPID_MEDIUM);
break;
case RAPID_OVERRIDE_MEDIUM:
if(position < encoder->position)
grbl.enqueue_realtime_command(CMD_OVERRIDE_RAPID_LOW);
else
grbl.enqueue_realtime_command(CMD_OVERRIDE_RAPID_RESET);
break;
case RAPID_OVERRIDE_LOW:
if(position > encoder->position)
grbl.enqueue_realtime_command(CMD_OVERRIDE_RAPID_MEDIUM);
break;
default:
break;
}
break;
case Encoder_Spindle_RPM:
update_position = true;
if(n_count < npos[encoder->id]) {
while(npos[encoder->id]-- != n_count)
grbl.enqueue_realtime_command(CMD_OVERRIDE_SPINDLE_FINE_MINUS);
} else {
while(npos[encoder->id]++ != n_count)
grbl.enqueue_realtime_command(CMD_OVERRIDE_SPINDLE_FINE_PLUS);
}
break;
case Encoder_MPG:
case Encoder_MPG_X:
case Encoder_MPG_Y:
case Encoder_MPG_Z:
#if N_AXIS > 3
case Encoder_MPG_A:
#endif
#if N_AXIS > 4
case Encoder_MPG_B:
#endif
#if N_AXIS > 5
case Encoder_MPG_C:
#endif
update_position = true;
mpg_spin_lock = true;
if(mpg[encoder->axis].encoder->velocity == 0) {
mpg[encoder->axis].event.stop = On; // mpg[encoder->axis].flags.moving;
mpg_event.mask |= (1 << encoder->axis);
} else {
mpg[encoder->axis].event.position_changed = On;
mpg_event.mask |= (1 << encoder->axis);
}
mpg_spin_lock = false;
break;
default:
break;
}
if(update_position) {
encoder->position = position;
npos[encoder->id] = n_count;
}
}
if(encoder->event.events) switch(encoder->mode) {
case Encoder_FeedRate:
case Encoder_RapidRate:
case Encoder_Spindle_RPM:
npos[encoder->id] = encoder->position = 0;
hal.encoder.reset(encoder->id);
reset_override(encoder->mode);
break;
case Encoder_MPG:
case Encoder_MPG_X:
case Encoder_MPG_Y:
case Encoder_MPG_Z:
#if N_AXIS > 3
case Encoder_MPG_A:
#endif
#if N_AXIS > 4
case Encoder_MPG_B:
#endif
#if N_AXIS > 5
case Encoder_MPG_C:
#endif
mpg_spin_lock = true;
if(encoder->event.click) {;
mpg[encoder->axis].event.scale = On;
mpg_event.mask |= (1 << encoder->axis);
}
if(encoder->event.dbl_click) {
mpg[encoder->axis].event.zero = On;
mpg_event.mask |= (1 << encoder->axis);
}
mpg_spin_lock = false;
break;
default:
break;
}
encoder->event.events = 0;
}
static void encoder_rt_report(stream_write_ptr stream_write, report_tracking_flags_t report)
{
if(override_encoder && report.encoder) {
stream_write("|Enc:");
stream_write(uitoa(override_encoder->mode));
}
if(on_realtime_report)
on_realtime_report(stream_write, report);
}
// Settings handling
static encoder_setting_id_t normalize_id (setting_id_t setting, uint_fast16_t *idx)
{
uint_fast16_t base_idx = (uint_fast16_t)setting - (uint_fast16_t)Setting_EncoderSettingsBase;
uint_fast8_t setting_idx = base_idx % ENCODER_SETTINGS_INCREMENT;
*idx = (base_idx - setting_idx) / ENCODER_SETTINGS_INCREMENT;
return (encoder_setting_id_t)setting_idx;
}
// Store encoder configuration. Encoder numbering sequence set by n_encoder define.
static status_code_t encoder_set_value (setting_id_t setting, uint_fast16_t value)
{
uint_fast16_t idx;
status_code_t status = Status_OK;
setting = normalize_id(setting, &idx);
if(idx < n_encoder) switch((encoder_setting_id_t)setting) {
case Setting_EncoderMode:
if(value < Encoder_Spindle_Position)
encoders[idx].mode = (encoder_mode_t)value;
else
status = Status_InvalidStatement;
break;
case Setting_EncoderCPR:
encoders[idx].cpr = (uint32_t)value;
break;
case Setting_EncoderCPD:
encoders[idx].cpd = (uint32_t)value;
break;
case Setting_EncoderDblClickWindow:
if(isintf(value) && value != NAN && value >= 100.0f && value <= 900.0f)
encoders[idx].dbl_click_window = (uint32_t)value;
else
status = Status_InvalidStatement;
break;
default:
status = Status_Unhandled;
break;
}
return status;
}
// Report encoder configuration. Encoder numbering sequence set by n_encoder define.
static uint32_t encoder_get_value (setting_id_t setting)
{
uint_fast16_t value = 0, idx;
setting = normalize_id(setting, &idx);
if(idx < n_encoder) switch((encoder_setting_id_t)setting) {
case Setting_EncoderMode:
value = (uint32_t)encoders[idx].mode;
break;
case Setting_EncoderCPR:
value = encoders[idx].cpr;
break;
case Setting_EncoderCPD:
value = encoders[idx].cpd;
break;
case Setting_EncoderDblClickWindow:
value = encoders[idx].dbl_click_window;
break;
default:
break;
}
return value;
}
static bool encoder_group_available (const setting_group_detail_t *group)
{
return group->id < Group_Encoder0 + QEI_ENABLE;
}
#define ESET_OPTS { .subgroups = On, .increment = ENCODER_SETTINGS_INCREMENT }
static const setting_group_detail_t encoder_groups [] = {
{ Group_Root, Group_Encoders, "Encoders"},
{ Group_Encoders, Group_Encoder0, "Encoder 1", encoder_group_available },
{ Group_Encoders, Group_Encoder1, "Encoder 2", encoder_group_available },
{ Group_Encoders, Group_Encoder2, "Encoder 3", encoder_group_available },
{ Group_Encoders, Group_Encoder3, "Encoder 4", encoder_group_available },
{ Group_Encoders, Group_Encoder4, "Encoder 5", encoder_group_available }
};
static const setting_detail_t encoder_settings[] = {
{ Setting_EncoderModeBase, Group_Encoder0, "Encoder ? mode", NULL, Format_RadioButtons, "Universal,Feed rate override,Rapid rate override,Spindle RPM override", NULL, NULL, Setting_NonCoreFn, encoder_set_value, encoder_get_value, NULL, ESET_OPTS },
{ Setting_EncoderCPRBase, Group_Encoder0, "Encoder ? counts per revolution", NULL, Format_Integer, "###0", "1", NULL, Setting_NonCoreFn, encoder_set_value, encoder_get_value, NULL, ESET_OPTS },
{ Setting_EncoderCPDBase, Group_Encoder0, "Encoder ? counts per detent", NULL, Format_Integer, "#0", "1", NULL, Setting_NonCoreFn, encoder_set_value, encoder_get_value, NULL, ESET_OPTS },
{ Setting_EncoderDblClickWindowBase, Group_Encoder0, "Encoder ? double click sensitivity", "ms", Format_Integer, "##0", "100", "900", Setting_NonCoreFn, encoder_set_value, encoder_get_value, NULL, ESET_OPTS }
};
static void encoder_settings_save (void)
{
hal.nvs.memcpy_to_nvs(nvs_address, (uint8_t *)&encoders, sizeof(encoders), true);
}
static void encoder_settings_restore (void)
{
uint_fast8_t idx;
for(idx = 0; idx < n_encoder; idx++) {
encoders[idx].mode = Encoder_Universal;
encoders[idx].cpr = 400;
encoders[idx].cpd = 4;
encoders[idx].dbl_click_window = 500; // ms
}
encoder_settings_save();
}
static void encoder_settings_load (void)
{
if(hal.nvs.memcpy_from_nvs((uint8_t *)&encoders, nvs_address, sizeof(encoders), true) != NVS_TransferResult_OK)
encoder_settings_restore();
}
static bool encoder_settings_iterator (const setting_detail_t *setting, setting_output_ptr callback, void *data)
{
uint_fast16_t idx, instance;
normalize_id(setting->id, &instance);
for(idx = 0; idx < QEI_ENABLE; idx++)
callback(setting, idx * ENCODER_SETTINGS_INCREMENT + instance, data);
return true;
}
//
bool encoder_start (encoder_t *encoder)
{
uint_fast8_t idx;
bool has_mpg_encoder = false;
if(n_encoder == 0)
return false;
override_encoder = NULL;
for(idx = 0; idx < n_encoder; idx++) {
encoder[idx].id = idx;
encoder[idx].axis = 0xFF;
encoder[idx].mode = encoders[idx].mode;
encoder[idx].settings = &encoders[idx];
switch(encoder[idx].settings->mode) {
case Encoder_Universal:
encoder[idx].mode = Encoder_FeedRate;
override_encoder = &encoder[idx];
break;
case Encoder_MPG:
{
uint_fast8_t i;
encoder[idx].axis = X_AXIS;
for(i = 0; i < N_AXIS; i++)
mpg[i].encoder = &encoder[idx];
has_mpg_encoder = true;
}
break;
case Encoder_MPG_X:
encoder[idx].axis = X_AXIS;
mpg[X_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
case Encoder_MPG_Y:
encoder[idx].axis = Y_AXIS;
mpg[Y_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
case Encoder_MPG_Z:
encoder[idx].axis = Z_AXIS;
mpg[Z_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
#if N_AXIS > 3
case Encoder_MPG_A:
encoder[idx].axis = A_AXIS;
mpg[A_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
#endif
#if N_AXIS > 4
case Encoder_MPG_B:
encoder[idx].axis = B_AXIS;
mpg[B_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
#endif
#if N_AXIS > 5
case Encoder_MPG_C:
encoder[idx].axis = C_AXIS;
mpg[C_AXIS].encoder = &encoder[idx];
has_mpg_encoder = true;
break;
#endif
default:
break;
}
hal.encoder.reset(idx);
}
for(idx = 0; idx < N_AXIS; idx++) {
mpg[idx].scale_factor = 1.0f;
// mpg[idx].handler = mpg_move_absolute;
mpg[idx].handler = mpg_jog_relative;
}
#if COMPATIBILITY_LEVEL <= 1
if(override_encoder) {
if(on_realtime_report == NULL) {
on_realtime_report = grbl.on_realtime_report;
grbl.on_realtime_report = encoder_rt_report;
}
} else if(on_realtime_report) {
grbl.on_realtime_report = encoder_rt_report;
on_realtime_report = grbl.on_realtime_report;
}
#endif
if(has_mpg_encoder) {
if(!on_execute_realtime) {
on_execute_realtime = grbl.on_execute_realtime;
grbl.on_execute_realtime = encoder_execute_realtime;
}
} else if(on_execute_realtime) {
grbl.on_execute_realtime = on_execute_realtime;
on_execute_realtime = NULL;
}
return true;
}
static void onReportOptions (bool newopt)
{
on_report_options(newopt);
if(!newopt)
report_plugin("ENCODER", "0.06");
}
static uint8_t get_n_encoders (void)
{
return QEI_ENABLE;
}
bool encoder_init (uint_fast8_t n_encoders)
{
static setting_details_t settings_details = {
.groups = encoder_groups,
.n_groups = QEI_ENABLE + 1,
.settings = encoder_settings,
.n_settings = sizeof(encoder_settings) / sizeof(setting_detail_t),
.save = encoder_settings_save,
.load = encoder_settings_load,
.restore = encoder_settings_restore,
.iterator = encoder_settings_iterator
};
if((nvs_address = nvs_alloc(sizeof(encoder_settings_t) * n_encoders))) {
n_encoder = n_encoders;
settings_register(&settings_details);
hal.encoder.get_n_encoders = get_n_encoders;
hal.encoder.on_event = encoder_event;
on_report_options = grbl.on_report_options;
grbl.on_report_options = onReportOptions;
}
return nvs_address != 0;
}
#endif // QEI_ENABLE