-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathmotion_control.c
1152 lines (923 loc) · 46.2 KB
/
motion_control.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
motion_control.c - high level interface for issuing motion commands
Part of grblHAL
Copyright (c) 2017-2024 Terje Io
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
Backlash compensation code based on code copyright (c) 2017 Patrick F. (Schildkroet)
Bezier splines based on a pull request for Marlin by Giovanni Mascellani
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "hal.h"
#include "nuts_bolts.h"
#include "protocol.h"
#include "machine_limits.h"
#include "state_machine.h"
#include "motion_control.h"
#include "tool_change.h"
#ifdef KINEMATICS_API
#include "kinematics.h"
#endif
#if ENABLE_BACKLASH_COMPENSATION
static float target_prev[N_AXIS] = {0};
static axes_signals_t dir_negative = {0}, backlash_enabled = {0};
void mc_backlash_init (axes_signals_t axes)
{
uint_fast8_t idx = N_AXIS;
do {
idx--;
if(bit_istrue(axes.mask, bit(idx))) {
BIT_SET(backlash_enabled.mask, bit(idx), settings.axis[idx].backlash > 0.0001f);
BIT_SET(dir_negative.mask, bit(idx), bit_isfalse(settings.homing.dir_mask.mask, bit(idx)));
}
} while(idx);
mc_sync_backlash_position();
}
void mc_sync_backlash_position (void)
{
// Update target_prev
system_convert_array_steps_to_mpos(target_prev, sys.position);
}
#endif
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
// NOTE: This is the primary gateway to the grbl planner. All line motions, including arc line
// segments, must pass through this routine before being passed to the planner. The separation of
// mc_line and plan_buffer_line is done primarily to place non-planner-type functions from being
// in the planner and to let backlash compensation or canned cycle integration simple and direct.
bool mc_line (float *target, plan_line_data_t *pl_data)
{
#ifdef KINEMATICS_API
float feed_rate = pl_data->feed_rate;
pl_data->rate_multiplier = 1.0f;
target = kinematics.segment_line(target, plan_get_position(), pl_data, true);
#endif
// If enabled, check for soft limit violations. Placed here all line motions are picked up
// from everywhere in grblHAL.
if(!(pl_data->condition.target_validated && pl_data->condition.target_valid))
limits_soft_check(target, pl_data->condition);
// If in check gcode mode, prevent motion by blocking planner. Soft limits still work.
if(state_get() != STATE_CHECK_MODE && protocol_execute_realtime()) {
// NOTE: Backlash compensation may be installed here. It will need direction info to track when
// to insert a backlash line motion(s) before the intended line motion and will require its own
// plan_check_full_buffer() and check for system abort loop. Also for position reporting
// backlash steps will need to be also tracked, which will need to be kept at a system level.
// There are likely some other things that will need to be tracked as well. However, we feel
// that backlash compensation should NOT be handled by grblHAL itself, because there are a myriad
// of ways to implement it and can be effective or ineffective for different CNC machines. This
// would be better handled by the interface as a post-processor task, where the original g-code
// is translated and inserts backlash motions that best suits the machine.
// NOTE: Perhaps as a middle-ground, all that needs to be sent is a flag or special command that
// indicates to grblHAL what is a backlash compensation motion, so that grblHAL executes the move but
// doesn't update the machine position values. Since the position values used by the g-code
// parser and planner are separate from the system machine positions, this is doable.
#ifdef KINEMATICS_API
while(kinematics.segment_line(target, NULL, pl_data, false)) {
#endif
#if ENABLE_BACKLASH_COMPENSATION
if(backlash_enabled.mask) {
bool backlash_comp = false;
uint_fast8_t idx = N_AXIS, axismask = bit(N_AXIS - 1);
do {
idx--;
if(backlash_enabled.mask & axismask) {
if(target[idx] > target_prev[idx]) {
if (dir_negative.value & axismask) {
dir_negative.value &= ~axismask;
target_prev[idx] += settings.axis[idx].backlash;
backlash_comp = true;
}
} else if(target[idx] < target_prev[idx] && !(dir_negative.value & axismask)) {
dir_negative.value |= axismask;
target_prev[idx] -= settings.axis[idx].backlash;
backlash_comp = true;
}
}
axismask >>= 1;
} while(idx);
if(backlash_comp) {
plan_line_data_t pl_backlash;
plan_data_init(&pl_backlash);
pl_backlash.condition.rapid_motion = On;
pl_backlash.condition.backlash_motion = On;
pl_backlash.line_number = pl_data->line_number;
pl_backlash.spindle.rpm = pl_data->spindle.rpm;
// If the buffer is full: good! That means we are well ahead of the robot.
// Remain in this loop until there is room in the buffer.
while(plan_check_full_buffer()) {
protocol_auto_cycle_start(); // Auto-cycle start when buffer is full.
if(!protocol_execute_realtime()) // Check for any run-time commands
return false; // Bail, if system abort.
}
plan_buffer_line(target_prev, &pl_backlash);
}
memcpy(target_prev, target, sizeof(float) * N_AXIS);
}
#endif // Backlash comp
// If the buffer is full: good! That means we are well ahead of the robot.
// Remain in this loop until there is room in the buffer.
do {
if(!protocol_execute_realtime()) // Check for any run-time commands
return false; // Bail, if system abort.
if(plan_check_full_buffer())
protocol_auto_cycle_start(); // Auto-cycle start when buffer is full.
else
break;
} while(true);
// Plan and queue motion into planner buffer.
// While in M3 laser mode also set spindle state and force a buffer sync
// if there is a coincident position passed.
if(!plan_buffer_line(target, pl_data) && pl_data->spindle.hal->cap.laser && pl_data->spindle.state.on && !pl_data->spindle.state.ccw) {
protocol_buffer_synchronize();
pl_data->spindle.hal->set_state(pl_data->spindle.hal, pl_data->spindle.state, pl_data->spindle.rpm);
}
#ifdef KINEMATICS_API
if(pl_data->condition.jog_motion) {
sys_state_t state = state_get();
if ((state == STATE_IDLE || state == STATE_TOOL_CHANGE) && plan_get_current_block() != NULL) { // Check if there is a block to execute.
state_set(STATE_JOG);
st_prep_buffer();
st_wake_up(); // NOTE: Manual start. No state machine required.
}
}
pl_data->feed_rate = feed_rate;
} // while(kinematics.segment_line()
pl_data->feed_rate = feed_rate;
#endif
}
return !ABORTED;
}
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, plane.axis_X defines circle plane in tool space, plane.axis_linear is
// the direction of helical travel, radius == circle radius, turns > 0 for CCW arcs. Used
// for vector transformation direction and number of full turns to add (abs(turns) - 1).
// The arc is approximated by generating a huge number of tiny, linear segments. The chordal tolerance
// of each segment is configured in settings.arc_tolerance, which is defined to be the maximum normal
// distance from segment to the circle when the end points both lie on the circle.
void mc_arc (float *target, plan_line_data_t *pl_data, float *position, float *offset, float radius, plane_t plane, int32_t turns)
{
typedef union {
double values[2];
struct {
double x;
double y;
};
} point_2dd_t;
point_2dd_t rv = { // Radius vector from center to current location
.x = -(double)offset[plane.axis_0],
.y = -(double)offset[plane.axis_1]
};
point_2dd_t center = {
.x = (double)position[plane.axis_0] - rv.x,
.y = (double)position[plane.axis_1] - rv.y
};
point_2dd_t rt = {
.x = (double)target[plane.axis_0] - center.x,
.y = (double)target[plane.axis_1] - center.y
};
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = (float)atan2(rv.x * rt.y - rv.y * rt.x, rv.x * rt.x + rv.y * rt.y);
if (turns > 0) { // Correct atan2 output per direction
if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON)
angular_travel += 2.0f * M_PI;
} else if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON)
angular_travel -= 2.0f * M_PI;
if(!pl_data->condition.target_validated && grbl.check_arc_travel_limits) {
pl_data->condition.target_validated = On;
pl_data->condition.target_valid = grbl.check_arc_travel_limits((coord_data_t *)target, (coord_data_t *)position,
(point_2d_t){ .x = (float)center.x, .y = (float)center.y },
radius, plane, turns);
}
if(labs(turns) > 1) {
uint32_t n_turns = labs(turns) - 1;
float arc_travel = 2.0f * M_PI * (float)n_turns + (turns > 0 ? angular_travel : -angular_travel);
coord_data_t arc_target;
#if N_AXIS > 3
uint_fast8_t idx = N_AXIS;
float linear_per_turn[N_AXIS];
do {
idx--;
if(!(idx == plane.axis_0 || idx == plane.axis_1))
linear_per_turn[idx] = (target[idx] - position[idx]) / arc_travel * 2.0f * M_PI;
} while(idx);
#else
float linear_per_turn = (target[plane.axis_linear] - position[plane.axis_linear]) / arc_travel * 2.0f * M_PI;
#endif
memcpy(&arc_target, target, sizeof(coord_data_t));
arc_target.values[plane.axis_0] = position[plane.axis_0];
arc_target.values[plane.axis_1] = position[plane.axis_1];
arc_target.values[plane.axis_linear] = position[plane.axis_linear];
while(n_turns--) {
#if N_AXIS > 3
idx = N_AXIS;
do {
idx--;
if(!(idx == plane.axis_0 || idx == plane.axis_1))
arc_target.values[idx] += linear_per_turn[idx];
} while(idx);
#else
arc_target.values[plane.axis_linear] += linear_per_turn;
#endif
mc_arc(arc_target.values, pl_data, position, offset, radius, plane, turns > 0 ? 1 : -1);
memcpy(position, arc_target.values, sizeof(coord_data_t));
}
}
// NOTE: Segment end points are on the arc, which can lead to the arc diameter being smaller by up to
// (2x) settings.arc_tolerance. For 99% of users, this is just fine. If a different arc segment fit
// is desired, i.e. least-squares, midpoint on arc, just change the mm_per_arc_segment calculation.
// For the intended uses of grblHAL, this value shouldn't exceed 2000 for the strictest of cases.
uint_fast16_t segments = 0;
if(2.0f * radius > settings.arc_tolerance)
segments = (uint_fast16_t)floorf(fabsf(0.5f * angular_travel * radius) / sqrtf(settings.arc_tolerance * (2.0f * radius - settings.arc_tolerance)));
if(segments) {
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (pl_data->condition.inverse_time) {
pl_data->feed_rate *= segments;
pl_data->condition.inverse_time = Off; // Force as feed absolute mode over arc segments.
}
float theta_per_segment = angular_travel / segments;
#if N_AXIS > 3
uint_fast8_t idx = N_AXIS;
float linear_per_segment[N_AXIS];
do {
idx--;
if(!(idx == plane.axis_0 || idx == plane.axis_1))
linear_per_segment[idx] = (target[idx] - position[idx]) / segments;
} while(idx);
#else
float linear_per_segment = (target[plane.axis_linear] - position[plane.axis_linear]) / segments;
#endif
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. Single precision values can accumulate error greater than tool precision in rare
cases. So, exact arc path correction is implemented. This approach avoids the problem of too many very
expensive trig operations [sin(),cos(),tan()] which can take 100-200 usec each to compute.
Small angle approximation may be used to reduce computation overhead further. A third-order approximation
(second order sin() has too much error) holds for most, if not, all CNC applications. Note that this
approximation will begin to accumulate a numerical drift error when theta_per_segment is greater than
~0.25 rad(14 deg) AND the approximation is successively used without correction several dozen times. This
scenario is extremely unlikely, since segment lengths and theta_per_segment are automatically generated
and scaled by the arc tolerance setting. Only a very large arc tolerance setting, unrealistic for CNC
applications, would cause this numerical drift error. However, it is best to set N_ARC_CORRECTION from a
low of ~4 to a high of ~20 or so to avoid trig operations while keeping arc generation accurate.
This approximation also allows mc_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
This is important when there are successive arc motions.
*/
// Computes: cos_T = 1 - theta_per_segment^2/2, sin_T = theta_per_segment - theta_per_segment^3/6) in ~52usec
float cos_T = 2.0f - theta_per_segment * theta_per_segment;
float sin_T = theta_per_segment * 0.16666667f * (cos_T + 4.0f);
cos_T *= 0.5f;
float sin_Ti;
float cos_Ti;
float r_axisi;
uint_fast16_t i, count = 0;
for (i = 1; i < segments; i++) { // Increment (segments-1).
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix.
r_axisi = rv.x * sin_T + rv.y * cos_T;
rv.x = rv.x * cos_T - rv.y * sin_T;
rv.y = r_axisi;
count++;
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cosf(i * theta_per_segment);
sin_Ti = sinf(i * theta_per_segment);
rv.x = -offset[plane.axis_0] * cos_Ti + offset[plane.axis_1] * sin_Ti;
rv.y = -offset[plane.axis_0] * sin_Ti - offset[plane.axis_1] * cos_Ti;
count = 0;
}
// Update arc_target location
position[plane.axis_0] = center.x + rv.x;
position[plane.axis_1] = center.y + rv.y;
#if N_AXIS > 3
idx = N_AXIS;
do {
idx--;
if(!(idx == plane.axis_0 || idx == plane.axis_1))
position[idx] += linear_per_segment[idx];
} while(idx);
#else
position[plane.axis_linear] += linear_per_segment;
#endif
// Bail mid-circle on system abort. Runtime command check already performed by mc_line.
if(!mc_line(position, pl_data))
return;
}
}
// Ensure last segment arrives at target location.
mc_line(target, pl_data);
}
// Bezier splines, from a pull request for Marlin
// By Giovanni Mascellani - https://github.com/giomasce/Marlin
// Compute the linear interpolation between two real numbers.
static inline float interp (const float a, const float b, const float t)
{
return (1.0f - t) * a + t * b;
}
/**
* Compute a B�zier curve using the De Casteljau's algorithm (see
* https://en.wikipedia.org/wiki/De_Casteljau's_algorithm), which is
* easy to code and has good numerical stability (very important,
* since Arudino works with limited precision real numbers).
*/
static inline float eval_bezier (const float a, const float b, const float c, const float d, const float t)
{
const float iab = interp(a, b, t),
ibc = interp(b, c, t),
icd = interp(c, d, t),
iabc = interp(iab, ibc, t),
ibcd = interp(ibc, icd, t);
return interp(iabc, ibcd, t);
}
/**
* We approximate Euclidean distance with the sum of the coordinates
* offset (so-called "norm 1"), which is quicker to compute.
*/
static inline float dist1 (const float x1, const float y1, const float x2, const float y2)
{
return fabsf(x1 - x2) + fabsf(y1 - y2);
}
/**
* The algorithm for computing the step is loosely based on the one in Kig
* (See https://sources.debian.net/src/kig/4:15.08.3-1/misc/kigpainter.cpp/#L759)
* However, we do not use the stack.
*
* The algorithm goes as it follows: the parameters t runs from 0.0 to
* 1.0 describing the curve, which is evaluated by eval_bezier(). At
* each iteration we have to choose a step, i.e., the increment of the
* t variable. By default the step of the previous iteration is taken,
* and then it is enlarged or reduced depending on how straight the
* curve locally is. The step is always clamped between MIN_STEP/2 and
* 2*MAX_STEP. MAX_STEP is taken at the first iteration.
*
* For some t, the step value is considered acceptable if the curve in
* the interval [t, t+step] is sufficiently straight, i.e.,
* sufficiently close to linear interpolation. In practice the
* following test is performed: the distance between eval_bezier(...,
* t+step/2) is evaluated and compared with 0.5*(eval_bezier(...,
* t)+eval_bezier(..., t+step)). If it is smaller than SIGMA, then the
* step value is considered acceptable, otherwise it is not. The code
* seeks to find the larger step value which is considered acceptable.
*
* At every iteration the recorded step value is considered and then
* iteratively halved until it becomes acceptable. If it was already
* acceptable in the beginning (i.e., no halving were done), then
* maybe it was necessary to enlarge it; then it is iteratively
* doubled while it remains acceptable. The last acceptable value
* found is taken, provided that it is between MIN_STEP and MAX_STEP
* and does not bring t over 1.0.
*
* Caveat: this algorithm is not perfect, since it can happen that a
* step is considered acceptable even when the curve is not linear at
* all in the interval [t, t+step] (but its mid point coincides "by
* chance" with the midpoint according to the parametrization). This
* kind of glitches can be eliminated with proper first derivative
* estimates; however, given the improbability of such configurations,
* the mitigation offered by MIN_STEP and the small computational
* power available on Arduino, I think it is not wise to implement it.
*/
void mc_cubic_b_spline (float *target, plan_line_data_t *pl_data, float *position, float *first, float *second)
{
float bez_target[N_AXIS];
memcpy(bez_target, position, sizeof(float) * N_AXIS);
float t = 0.0f, step = BEZIER_MAX_STEP;
while (t < 1.0f) {
// First try to reduce the step in order to make it sufficiently
// close to a linear interpolation.
bool did_reduce = false;
float new_t = t + step;
if(new_t > 1.0f)
new_t = 1.0f;
float new_pos0 = eval_bezier(position[X_AXIS], first[X_AXIS], second[X_AXIS], target[X_AXIS], new_t),
new_pos1 = eval_bezier(position[Y_AXIS], first[Y_AXIS], second[Y_AXIS], target[Y_AXIS], new_t);
while(new_t - t >= (BEZIER_MIN_STEP)) {
// if (new_t - t < (BEZIER_MIN_STEP))
// break;
const float candidate_t = 0.5f * (t + new_t),
candidate_pos0 = eval_bezier(position[X_AXIS], first[X_AXIS], second[X_AXIS], target[X_AXIS], candidate_t),
candidate_pos1 = eval_bezier(position[Y_AXIS], first[Y_AXIS], second[Y_AXIS], target[Y_AXIS], candidate_t),
interp_pos0 = 0.5f * (bez_target[X_AXIS] + new_pos0),
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + new_pos1);
if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (BEZIER_SIGMA))
break;
new_t = candidate_t;
new_pos0 = candidate_pos0;
new_pos1 = candidate_pos1;
did_reduce = true;
}
// If we did not reduce the step, maybe we should enlarge it.
if (!did_reduce) while (new_t - t <= BEZIER_MAX_STEP) {
// if (new_t - t > BEZIER_MAX_STEP)
// break;
const float candidate_t = t + 2.0f * (new_t - t);
if (candidate_t >= 1.0f)
break;
const float candidate_pos0 = eval_bezier(position[X_AXIS], first[X_AXIS], second[X_AXIS], target[X_AXIS], candidate_t),
candidate_pos1 = eval_bezier(position[Y_AXIS], first[Y_AXIS], second[Y_AXIS], target[Y_AXIS], candidate_t),
interp_pos0 = 0.5f * (bez_target[X_AXIS] + candidate_pos0),
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + candidate_pos1);
if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (BEZIER_SIGMA))
break;
new_t = candidate_t;
new_pos0 = candidate_pos0;
new_pos1 = candidate_pos1;
}
// Check some postcondition; they are disabled in the actual
// Marlin build, but if you test the same code on a computer you
// may want to check they are respect.
/*
assert(new_t <= 1.0);
if (new_t < 1.0) {
assert(new_t - t >= (MIN_STEP) / 2.0);
assert(new_t - t <= (MAX_STEP) * 2.0);
}
*/
step = new_t - t;
t = new_t;
bez_target[X_AXIS] = new_pos0;
bez_target[Y_AXIS] = new_pos1;
// Bail mid-spline on system abort. Runtime command check already performed by mc_line.
if(!mc_line(bez_target, pl_data))
return;
}
}
// end Bezier splines
void mc_canned_drill (motion_mode_t motion, float *target, plan_line_data_t *pl_data, float *position, plane_t plane, uint32_t repeats, gc_canned_t *canned)
{
pl_data->condition.rapid_motion = On; // Set rapid motion condition flag.
// if current Z < R, rapid move to R
if(position[plane.axis_linear] < canned->retract_position) {
position[plane.axis_linear] = canned->retract_position;
if(!mc_line(position, pl_data))
return;
}
float position_linear = position[plane.axis_linear],
retract_to = canned->retract_mode == CCRetractMode_RPos ? canned->retract_position : position_linear;
// rapid move to X, Y
memcpy(position, target, sizeof(float) * N_AXIS);
position[plane.axis_linear] = position_linear;
if(!mc_line(position, pl_data))
return;
while(repeats--) {
// if current Z > R, rapid move to R
if(position[plane.axis_linear] > canned->retract_position) {
position[plane.axis_linear] = canned->retract_position;
if(!mc_line(position, pl_data))
return;
}
position_linear = position[plane.axis_linear];
while(position_linear > canned->xyz[plane.axis_linear]) {
position_linear -= canned->delta;
if(position_linear < canned->xyz[plane.axis_linear])
position_linear = canned->xyz[plane.axis_linear];
pl_data->condition.rapid_motion = Off;
position[plane.axis_linear] = position_linear;
if(!mc_line(position, pl_data)) // drill
return;
if(canned->dwell > 0.0f)
mc_dwell(canned->dwell);
if(canned->spindle_off)
pl_data->spindle.hal->set_state(pl_data->spindle.hal, (spindle_state_t){0}, 0.0f);
// rapid retract
switch(motion) {
case MotionMode_DrillChipBreak:
position[plane.axis_linear] = position[plane.axis_linear] == canned->xyz[plane.axis_linear]
? retract_to
: position[plane.axis_linear] + settings.g73_retract;
break;
default:
position[plane.axis_linear] = retract_to;
break;
}
pl_data->condition.rapid_motion = canned->rapid_retract;
if(!mc_line(position, pl_data))
return;
if(canned->spindle_off)
spindle_set_state_synced(pl_data->spindle.hal, pl_data->spindle.state, pl_data->spindle.rpm);
}
pl_data->condition.rapid_motion = On; // Set rapid motion condition flag.
// rapid move to next position if incremental mode
if(repeats && gc_state.modal.distance_incremental) {
position[plane.axis_0] += canned->xyz[plane.axis_0];
position[plane.axis_1] += canned->xyz[plane.axis_1];
if(!mc_line(position, pl_data))
return;
}
}
memcpy(target, position, sizeof(float) * N_AXIS);
}
// Calculates depth-of-cut (DOC) for a given threading pass.
inline static float calc_thread_doc (uint_fast16_t pass, float cut_depth, float inv_degression)
{
return cut_depth * powf((float)pass, inv_degression);
}
// Repeated cycle for threading
// G76 P- X- Z- I- J- R- K- Q- H- E- L-
// P - picth, X - main taper distance, Z - final position, I - thread peak offset, J - initial depth, K - full depth
// R - depth regression, Q - compound slide angle, H - spring passes, E - taper, L - taper end
// TODO: change pitch to follow any tapers
void mc_thread (plan_line_data_t *pl_data, float *position, gc_thread_data *thread, bool feed_hold_disabled)
{
uint_fast16_t pass = 1, passes = 0;
float doc = thread->initial_depth, inv_degression = 1.0f / thread->depth_degression, thread_length;
float entry_taper_length = thread->end_taper_type & Taper_Entry ? thread->end_taper_length : 0.0f;
float exit_taper_length = thread->end_taper_type & Taper_Exit ? thread->end_taper_length : 0.0f;
float infeed_factor = tanf(thread->infeed_angle * RADDEG);
float target[N_AXIS], start_z = position[Z_AXIS] + thread->depth * infeed_factor;
memcpy(target, position, sizeof(float) * N_AXIS);
// Calculate number of passes
while(calc_thread_doc(++passes, doc, inv_degression) < thread->depth);
passes += thread->spring_passes + 1;
if((thread_length = thread->z_final - position[Z_AXIS]) > 0.0f) {
if(thread->end_taper_type & Taper_Entry)
entry_taper_length = -entry_taper_length;
if(thread->end_taper_type & Taper_Exit)
exit_taper_length = - exit_taper_length;
}
thread_length += entry_taper_length + exit_taper_length;
if(thread->main_taper_height != 0.0f)
thread->main_taper_height = thread->main_taper_height * thread_length / (thread_length - (entry_taper_length + exit_taper_length));
pl_data->condition.rapid_motion = On; // Set rapid motion condition flag.
// TODO: Add to initial move to compensate for acceleration distance?
/*
float acc_distance = pl_data->feed_rate * pl_data->spindle.hal->get_data(SpindleData_RPM)->rpm / settings.acceleration[Z_AXIS];
acc_distance = acc_distance * acc_distance * settings.acceleration[Z_AXIS] * 0.5f;
*/
// Initial Z-move for compound slide angle offset.
if(infeed_factor != 0.0f) {
target[Z_AXIS] = start_z - doc * infeed_factor;
if(!mc_line(target, pl_data))
return;
}
while(--passes) {
if(thread->end_taper_type & Taper_Entry)
target[X_AXIS] = position[X_AXIS] + (thread->peak + doc - thread->depth) * thread->cut_direction;
else
target[X_AXIS] = position[X_AXIS] + (thread->peak + doc) * thread->cut_direction;
if(!mc_line(target, pl_data))
return;
if(!protocol_buffer_synchronize() && state_get() != STATE_IDLE) // Wait until any previous moves are finished.
return;
pl_data->condition.rapid_motion = Off; // Clear rapid motion condition flag,
pl_data->spindle.state.synchronized = On; // enable spindle sync for cut
pl_data->overrides.feed_hold_disable = On; // and disable feed hold
// Cut thread pass
// 1. Entry taper
if(thread->end_taper_type & Taper_Entry) {
target[X_AXIS] += thread->depth * thread->cut_direction;
target[Z_AXIS] -= entry_taper_length;
if(!mc_line(target, pl_data))
return;
}
// 2. Main part
target[Z_AXIS] += thread_length;
if(!mc_line(target, pl_data))
return;
// 3. Exit taper
if(thread->end_taper_type & Taper_Exit) {
target[X_AXIS] -= thread->depth * thread->cut_direction;
target[Z_AXIS] -= exit_taper_length;
if(!mc_line(target, pl_data))
return;
}
pl_data->condition.rapid_motion = On; // Set rapid motion condition flag and
pl_data->spindle.state.synchronized = Off; // disable spindle sync for retract & reposition
if(passes > 1) {
// Get DOC of next pass.
doc = calc_thread_doc(++pass, thread->initial_depth, inv_degression);
doc = min(doc, thread->depth);
// 4. Retract
target[X_AXIS] = position[X_AXIS] + (doc - thread->depth) * thread->cut_direction;
if(!mc_line(target, pl_data))
return;
// Restore disable feed hold status for reposition move.
pl_data->overrides.feed_hold_disable = feed_hold_disabled;
// 5. Back to start, add compound slide angle offset when commanded.
target[Z_AXIS] = start_z - (infeed_factor != 0.0f ? doc * infeed_factor : 0.0f);
if(!mc_line(target, pl_data))
return;
} else {
doc = thread->depth;
target[X_AXIS] = position[X_AXIS];
if(!mc_line(target, pl_data))
return;
}
}
}
// Sets up valid jog motion received from g-code parser, checks for soft-limits, and executes the jog.
status_code_t mc_jog_execute (plan_line_data_t *pl_data, parser_block_t *gc_block, float *position)
{
// Initialize planner data struct for jogging motions.
// NOTE: Spindle and coolant are allowed to fully function with overrides during a jog.
pl_data->feed_rate = gc_block->values.f;
pl_data->condition.no_feed_override =
pl_data->condition.jog_motion =
pl_data->condition.target_valid =
pl_data->condition.target_validated = On;
pl_data->line_number = gc_block->values.n;
if(settings.limits.flags.jog_soft_limited)
grbl.apply_jog_limits(gc_block->values.xyz, position);
else if(sys.soft_limits.mask && !grbl.check_travel_limits(gc_block->values.xyz, sys.soft_limits, true))
return Status_TravelExceeded;
// Valid jog command. Plan, set state, and execute.
mc_line(gc_block->values.xyz, pl_data);
#ifndef KINEMATICS_API // kinematics may segment long jog moves triggering auto start (RUN)...
sys_state_t state = state_get();
if ((state == STATE_IDLE || state == STATE_TOOL_CHANGE) && plan_get_current_block() != NULL) { // Check if there is a block to execute.
state_set(STATE_JOG);
st_prep_buffer();
st_wake_up(); // NOTE: Manual start. No state machine required.
}
#endif
return Status_OK;
}
// Execute dwell in seconds.
void mc_dwell (float seconds)
{
if (state_get() != STATE_CHECK_MODE) {
protocol_buffer_synchronize();
delay_sec(seconds, DelayMode_Dwell);
}
}
// Perform homing cycle to locate and set machine zero. Only '$H' executes this command.
// NOTE: There should be no motions in the buffer and grblHAL must be in an idle state before
// executing the homing cycle. This prevents incorrect buffered plans after homing.
status_code_t mc_homing_cycle (axes_signals_t cycle)
{
bool home_all = cycle.mask == 0;
status_code_t homed_status = Status_OK;
memset(&sys.last_event.limits, 0, sizeof(limit_signals_t));
if(settings.homing.flags.manual && (home_all ? sys.homing.mask : (cycle.mask & sys.homing.mask)) == 0) {
if(home_all)
cycle.mask = AXES_BITMASK;
sys.homed.mask |= cycle.mask;
#ifdef KINEMATICS_API
kinematics.limits_set_machine_positions(cycle);
#else
limits_set_machine_positions(cycle, false);
#endif
} else {
if(settings.axis[0].homing_seek_rate <= 0.0f)
return Status_HomingDisabled;
// Check and abort homing cycle, if hard limits are already enabled. Helps prevent problems
// with machines with limits wired on both ends of travel to one limit pin.
// TODO: Move the pin-specific LIMIT_BIT call to limits.c as a function.
if (settings.limits.flags.two_switches && hal.home_cap.a.mask == 0 && limit_signals_merge(hal.limits.get_state()).value) {
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
system_set_exec_alarm(Alarm_HardLimit);
return Status_Unhandled;
}
#ifdef KINEMATICS_API
if(kinematics.homing_cycle_validate) {
uint_fast8_t idx = N_AXIS;
if (!home_all) { // Perform homing cycle based on mask.
if(!kinematics.homing_cycle_validate(cycle)) {
system_set_exec_alarm(Alarm_HomingFail);
return Status_Unhandled;
}
} else do {
if(settings.homing.cycle[--idx].mask) {
if(!kinematics.homing_cycle_validate(settings.homing.cycle[idx])) {
system_set_exec_alarm(Alarm_HomingFail);
return Status_Unhandled;
}
}
} while(idx);
}
#endif
state_set(STATE_HOMING); // Set homing system state.
#if COMPATIBILITY_LEVEL == 0
if(!settings.status_report.when_homing) {
system_set_exec_state_flag(EXEC_STATUS_REPORT); // Force a status report and
delay_sec(0.1f, DelayMode_Dwell); // delay a bit to get it sent (or perhaps wait a bit for a request?)
}
#endif
// Turn off spindle and coolant (and update parser state)
if(spindle_is_on())
gc_spindle_off();
if(hal.coolant.get_state().mask)
gc_coolant((coolant_state_t){0});
// ---------------------------------------------------------------------------
// Perform homing routine. NOTE: Special motion case. Only system reset works.
if (!home_all) // Perform homing cycle based on mask.
homed_status = limits_go_home(cycle);
else {
uint_fast8_t idx = 0;
sys.homed.mask &= ~sys.homing.mask;
do {
if(settings.homing.cycle[idx].mask) {
cycle.mask = settings.homing.cycle[idx].mask;
if((homed_status = limits_go_home(cycle)) != Status_OK)
break;
}
} while(++idx < N_AXIS);
}
// If hard limits feature enabled, re-enable hard limits pin change register after homing cycle.
// NOTE: always call at end of homing regadless of setting, may be used to disable
// sensorless homing or switch back to limit switches input (if different from homing switches)
hal.limits.enable(settings.limits.flags.hard_enabled, (axes_signals_t){0});
}
if(cycle.mask) {
if(!protocol_execute_realtime()) { // Check for reset and set system abort.
if(grbl.on_homing_completed)
grbl.on_homing_completed(cycle, false);
return Status_Unhandled; // Did not complete. Alarm state set by mc_alarm.
}
if(homed_status != Status_OK) {
if(state_get() == STATE_HOMING)
state_set(STATE_IDLE);
if(grbl.on_homing_completed)
grbl.on_homing_completed(cycle, false);
return homed_status;
}
if(home_all && settings.homing.flags.manual)
{
cycle.mask = AXES_BITMASK & ~sys.homing.mask;
sys.homed.mask = AXES_BITMASK;
#ifdef KINEMATICS_API
kinematics.limits_set_machine_positions(cycle);
#else
limits_set_machine_positions(cycle, false);
#endif
}
// Homing cycle complete! Setup system for normal operation.
// ---------------------------------------------------------
// Sync gcode parser and planner positions to homed position.
sync_position();
}
system_add_rt_report(Report_Homed);
homed_status = settings.limits.flags.hard_enabled &&
settings.limits.flags.check_at_init &&
(limit_signals_merge(hal.limits.get_state()).value & sys.hard_limits.mask)
? Status_LimitsEngaged
: Status_OK;
if(homed_status == Status_OK)
limits_set_work_envelope();
if(grbl.on_homing_completed)
grbl.on_homing_completed(cycle, homed_status == Status_OK);
return homed_status;
}
// Perform tool length probe cycle. Requires probe switch.
// NOTE: Upon probe failure, the program will be stopped and placed into ALARM state.
gc_probe_t mc_probe_cycle (float *target, plan_line_data_t *pl_data, gc_parser_flags_t parser_flags)
{
uint_fast8_t idx = N_AXIS;
// TODO: Need to update this cycle so it obeys a non-auto cycle start.
if (state_get() == STATE_CHECK_MODE)
return GCProbe_CheckMode;
do {
idx--;
sys.probe_position[idx] = lroundf(target[idx] * settings.axis[idx].steps_per_mm);
} while(idx);
sys.probe_coordsys_id = gc_state.modal.coord_system.id;
// Finish all queued commands and empty planner buffer before starting probe cycle.
if (!protocol_buffer_synchronize())
return GCProbe_Abort; // Return if system reset has been issued.
// Initialize probing control variables
sys.flags.probe_succeeded = Off; // Re-initialize probe history before beginning cycle.
hal.probe.configure(parser_flags.probe_is_away, true);
#if COMPATIBILITY_LEVEL <= 1
bool at_g59_3 = false, probe_toolsetter = grbl.on_probe_toolsetter != NULL && state_get() != STATE_TOOL_CHANGE && (sys.homed.mask & (X_AXIS_BIT|Y_AXIS_BIT));
if(probe_toolsetter)
grbl.on_probe_toolsetter(NULL, NULL, at_g59_3 = system_xy_at_fixture(CoordinateSystem_G59_3, TOOLSETTER_RADIUS), true);