如果数据符合COCO或VOC数据集格式,可以直接进入2.选择模型,否则需要将数据集转换至COCO格式或VOC格式。
在./tools/
中提供了x2coco.py
用于将voc格式数据集、labelme标注的数据集或cityscape数据集转换为COCO数据集,例如:
(1)labelmes数据转换为COCO格式:
python tools/x2coco.py \
--dataset_type labelme \
--json_input_dir ./labelme_annos/ \
--image_input_dir ./labelme_imgs/ \
--output_dir ./cocome/ \
--train_proportion 0.8 \
--val_proportion 0.2 \
--test_proportion 0.0
(2)voc数据转换为COCO格式:
python tools/x2coco.py \
--dataset_type voc \
--voc_anno_dir path/to/VOCdevkit/VOC2007/Annotations/ \
--voc_anno_list path/to/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt \
--voc_label_list dataset/voc/label_list.txt \
--voc_out_name voc_train.json
参数说明:
--dataset_type
:需要转换的数据格式,目前支持:’voc‘、’labelme‘和’cityscape‘--json_input_dir
:使用labelme标注的json文件所在文件夹--image_input_dir
:图像文件所在文件夹--output_dir
:转换后的COCO格式数据集存放位置--train_proportion
:标注数据中用于train的比例--val_proportion
:标注数据中用于validation的比例--test_proportion
:标注数据中用于infer的比例--voc_anno_dir
:VOC数据转换为COCO数据集时的voc数据集标注文件路径--voc_anno_list
:VOC数据转换为COCO数据集时的标注列表文件,一般是ImageSets/Main
下trainval.txt和test.txt文件--voc_label_list
:VOC数据转换为COCO数据集时的类别列表文件,文件中每一行表示一种物体类别--voc_out_name
:VOC数据转换为COCO数据集时的输出的COCO数据集格式json文件名
VOC数据集所必须的文件内容如下所示,数据集根目录需有VOCdevkit/VOC2007
或VOCdevkit/VOC2012
文件夹,该文件夹中需有Annotations
,JPEGImages
和ImageSets/Main
三个子目录,Annotations
存放图片标注的xml文件,JPEGImages
存放数据集图片,ImageSets/Main
存放训练trainval.txt和测试test.txt列表。
VOCdevkit
├──VOC2007(或VOC2012)
│ ├── Annotations
│ ├── xxx.xml
│ ├── JPEGImages
│ ├── xxx.jpg
│ ├── ImageSets
│ ├── Main
│ ├── trainval.txt
│ ├── test.txt
执行以下脚本,将根据ImageSets/Main
目录下的trainval.txt和test.txt文件在数据集根目录生成最终的trainval.txt
和test.txt
列表文件:
python dataset/voc/create_list.py -d path/to/dataset
参数说明:
-d
或--dataset_dir
:VOC格式数据集所在文件夹路径
如果数据集有新的格式需要添加进PaddleDetection中,您可自行参考数据处理文档中的添加新数据源文档部分,开发相应代码完成新的数据源支持,同时数据处理具体代码解析等可阅读数据处理文档
PaddleDetection中提供了丰富的模型库,具体可在模型库中查看各个模型的指标,您可依据实际部署算力的情况,选择合适的模型:
- 算力资源小时,推荐您使用移动端模型,PaddleDetection中的移动端模型经过迭代优化,具有较高性价比。
- 算力资源强大时,推荐您使用服务器端模型,该模型是PaddleDetection提出的面向服务器端实用的目标检测方案。
同时也可以根据使用场景不同选择合适的模型:
- 当小物体检测时,推荐您使用两阶段检测模型,比如Faster RCNN系列模型,具体可在模型库中找到。
- 当在交通领域使用,如行人,车辆检测时,推荐您使用特色垂类检测模型。
- 当在竞赛中使用,推荐您使用竞赛冠军模型CACascadeRCNN与OIDV5_BASELINE_MODEL。
- 当在人脸检测中使用,推荐您使用人脸检测模型。
同时也可以尝试PaddleDetection中开发的YOLOv3增强模型、YOLOv4模型与Anchor Free模型等。
在yolo系列模型中,可以运行tools/anchor_cluster.py
来得到适用于你的数据集Anchor,使用方法如下:
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
目前tools/anchor_cluster.py
支持的主要参数配置如下表所示:
参数 | 用途 | 默认值 | 备注 |
---|---|---|---|
-c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
-n/--n | 聚类的簇数 | 9 | Anchor的数目 |
-s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
-m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
-i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
-gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
-t/--thresh | Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
选择好模型后,需要在configs
目录中找到对应的配置文件,为了适配在自定义数据集上训练,需要对参数配置做一些修改:
- 数据路径配置: 在yaml配置文件中,依据1.数据准备中准备好的路径,配置
TrainReader
、EvalReader
和TestReader
的路径。- COCO数据集:
dataset: !COCODataSet image_dir: val2017 # 图像数据基于数据集根目录的相对路径 anno_path: annotations/instances_val2017.json # 标注文件基于数据集根目录的相对路径 dataset_dir: dataset/coco # 数据集根目录 with_background: true # 背景是否作为一类标签,默认为true。
- VOC数据集:
dataset: !VOCDataSet anno_path: trainval.txt # 训练集列表文件基于数据集根目录的相对路径 dataset_dir: dataset/voc # 数据集根目录 use_default_label: true # 是否使用默认标签,默认为true。 with_background: true # 背景是否作为一类标签,默认为true。
说明: 如果您使用自己的数据集进行训练,需要将use_default_label
设为false
,并在数据集根目录中修改label_list.txt
文件,添加自己的类别名,其中行号对应类别号。
-
类别数修改: 如果您自己的数据集类别数和COCO/VOC的类别数不同, 需修改yaml配置文件中类别数,
num_classes: XX
。 注意:如果dataset中设置with_background: true
,那么num_classes数必须是真实类别数+1(背景也算作1类) -
根据需要修改
LearningRate
相关参数:- 如果GPU卡数变化,依据lr,batch-size关系调整lr: 学习率调整策略
- 自己数据总数样本数和COCO不同,依据batch_size, 总共的样本数,换算总迭代次数
max_iters
,以及LearningRate
中的milestones
(学习率变化界限)。
-
预训练模型配置:通过在yaml配置文件中的
pretrain_weights: path/to/weights
参数可以配置路径,可以是链接或权重文件路径。可直接沿用配置文件中给出的在ImageNet数据集上的预训练模型。同时我们支持训练在COCO或Obj365数据集上的模型权重作为预训练模型,做迁移学习,详情可参考迁移学习文档。
- 参数配置完成后,就可以开始训练模型了,具体可参考训练/评估/预测入门文档。
- 训练测试完成后,根据需要可以进行模型部署:首先需要导出可预测的模型,可参考导出模型教程;导出模型后就可以进行C++预测部署或者python端预测部署。
我们以AI识虫数据集
为例,对自定义数据集上训练过程进行演示,该数据集提供了2183张图片,其中训练集1693张,验证集与测试集分别有245张,共包含7种昆虫。下载链接为:数据集链接, 在AIStudio上也有很多用户公开了此数据集,您可以进行搜索并下载,如:链接1,链接2等。
由于该数据集标注文件都是xml文件,所以在准备数据步骤中选择方式二:将数据集转换为VOC格式。
-
由于该数据集中缺少已标注图片名列表文件trainval.txt和test.txt,所以需要进行生成,利用如下python脚本,在数据集根目录下执行,便可生成
trainval.txt
和test.txt
文件:import os file_train = open('trainval.txt', 'w') file_test = open('test.txt', 'w') for xml_name in os.listdir('train/annotations/xmls'): file_train.write(xml_name[:-4] + '\n') for xml_name in os.listdir('val/annotations/xmls'): file_test.write(xml_name[:-4] + '\n') file_train.close() file_test.close()
-
模仿VOC数据集目录结构,新建
VOCdevkit
文件夹并进入其中,然后继续新建VOC2007
文件夹并进入其中,之后新建Annotations
、JPEGImages
和ImageSets
文件夹,最后进入ImageSets
文件夹中新建Main
文件夹,至此完成VOC数据集目录结构的建立。 -
将该数据集中的
train/annotations/xmls
与val/annotations/xmls
下的所有xml标注文件拷贝到VOCdevkit/VOC2007/Annotations
中,将该数据集中的train/images/
与val/images/
下的所有图片拷贝到VOCdevkit/VOC2007/JPEGImages
中,将第一步生成的trainval.txt
和test.txt
文件移动到VOCdevkit/VOC2007/ImageSets/Main
中。 -
最后在数据集根目录下输出最终的
trainval.txt
和test.txt
文件:python dataset/voc/create_list.py -d path/to/dataset
** 注意:** 最终的trainval.txt
和test.txt
文件与第一步生成的两个文件不同之处在于最终的文件存储的是标注文件路径与图片路径,初始生成的文件只有已标注的图片名称。
由于昆虫比较小,属于小物体检测范畴,我们选择Faster-Rcnn系列模型。
然后基于configs/faster_rcnn_r50_fpn_1x.yml
文件进行修改:
-
修改Reader模块:为了方便模型评估需要将metric改为
VOC
;Reader部分已经在faster_fpn_reader.yml
中定义完成,此处将要修改的内容覆写即可,如下yaml配置所示:... metric: VOC ... _READER_: 'faster_fpn_reader.yml' TrainReader: dataset: !VOCDataSet dataset_dir: path/to/dataset anno_path: trainval.txt use_default_label: false batch_size: 2 EvalReader: inputs_def: fields: ['image', 'im_info', 'im_id', 'im_shape', 'gt_bbox', 'gt_class', 'is_difficult'] dataset: !VOCDataSet dataset_dir: path/to/dataset anno_path: test.txt use_default_label: false TestReader: dataset: !ImageFolder anno_path: path/to/dataset/label_list.txt use_default_label: false
-
修改训练轮数与学习率等参数:
- 根据训练集数量与总
batch_size
大小计算epoch数,然后将epoch数换算得到训练总轮数max_iters
。milestones
(学习率变化界限)也是同理。原配置文件中总batch_size
=2*8=16(8卡训练),训练集数量约为12万张,max_iters
=90000,所以epoch数=16x90000/120000=12。在AI识虫数据集中,训练集数量约为1700,在单卡GPU上训练,max_iters
=12x1700/2=10200。同理计算milestones为: [6800, 9000]。 - 学习率与GPU数量呈线性变换关系,如果GPU数量减半,那么学习率也将减半。由于PaddleDetection中的
faster_rcnn_r50_fpn
模型是在8卡GPU环境下训练得到的,所以我们要将学习率除以8:
max_iters: 10200 ... LearningRate: base_lr: 0.0025 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [6800, 9000]
- 根据训练集数量与总
- 为了使模型更快的收敛,我们使用在COCO数据集上训好的模型进行迁移学习,并且增加
--eval
参数,表示边训练边测试:export CUDA_VISIBLE_DEVICES=0 python -u tools/train.py -c configs/faster_rcnn_r50_fpn_1x.yml \ -o pretrain_weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar \ finetune_exclude_pretrained_params=['cls_score','bbox_pred'] \ --eval
- 在P40机器上单卡训练40分钟左右就可完成训练,最终的mAP(0.50, 11point)=71.60,如果想让模型收敛的更好,可以继续增大max_iters,训练2x、3x等模型,但并不是意味着训练轮数越多效果越好,要防止过拟合的出现。
训完之后,可以任意挑选一张测试集图片进行测试,输出的结果图片会默认保存在output目录中:
python -u tools/infer.py -c configs/faster_rcnn_r50_fpn_1x.yml \
--infer_img=path/to/dataset/2572.jpeg
- 模型部署:
- 首先需要先将模型导出成可预测模型:
python -u tools/export_model.py -c configs/faster_rcnn_r50_fpn_1x.yml \ --output_dir=./inference_model
- 然后我们使用python端进行预测:
python deploy/python/infer.py --model_dir=./inference_model/faster_rcnn_r50_fpn_1x \ --image_file=path/to/dataset/2572.jpeg \ --use_gpu=True
如仍有疑惑,欢迎给我们提issue。