forked from PyDMD/PyDMD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
user-manual-bopdmd.py
243 lines (185 loc) · 8.45 KB
/
user-manual-bopdmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python
# coding: utf-8
# # PyDMD
# ## User Manual 1: BOP-DMD on Flow Past a Cylinder Data
#
# In this guide, we briefly highlight all of the major features of the `BOPDMD`[[docs]](https://pydmd.github.io/PyDMD/bopdmd.html)[[source]](https://github.com/PyDMD/PyDMD/blob/master/pydmd/bopdmd.py) module by applying it to 2-D flow past a cylinder vorticity data with Reynolds number $Re = 100$. Examples listed in the table of contents will consecutively build on one another so that sample models will slowly increase in complexity. Data is available at <ins>dmdbook.com/DATA.zip</ins>. Note that we use a low resolution version of the data in this guide.
#
# #### Table of Contents:
# 1. [Optimized DMD](#optdmd)
# 2. [Optimized DMD with Bagging (BOP-DMD)](#bopdmd)
# 3. [BOP-DMD with Eigenvalue Constraints](#eig)
# 4. [Using Verbose Outputs](#verbose)
# 5. [Removing Bad Bags](#bag-fail)
# 6. [Applying Data Preprocessors](#preprocess)
# ### Import the Latest Version of PyDMD
# To ensure that you are working with the most up-to-date version of PyDMD, clone the repository with
# ```bash
# git clone https://github.com/PyDMD/PyDMD
# ```
# and pip install the package in development mode from the cloned directory.
# ```bash
# pip install -e .
# ```
# We may then perform our imports and be certain to have access to the latest PyDMD features.
# In[1]:
import warnings
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
from pydmd import BOPDMD
from pydmd.plotter import plot_summary
from pydmd.preprocessing import zero_mean_preprocessing
warnings.filterwarnings("ignore")
# ### Import the Flow Past a Cylinder Data
# We have 151 snapshots, each with a pixel dimension of 149 x 66. To perform BOP-DMD, we define:
# - `X` = (9834, 151) NumPy array of flattened snapshots. We add Gaussian noise for added realism.
# - `t` = (151,) NumPy array of times of snapshot collection. We assume these times to be $0,1,\dots$
# In[2]:
# Import vorticity data and frame dimensions.
mat = sio.loadmat("CYLINDER_ALL_LOW_RES.mat")
X = mat["VORTALL"] # Vorticity data.
nx = mat["nx"][0][0] # Number of pixels along x-axis.
ny = mat["ny"][0][0] # Number of pixels along y-axis.
m = X.shape[-1] # Number of time points.
t = np.arange(m) # Time data.
# Add Gaussian noise to the data.
noise_magnitude = 0.4
rng = np.random.default_rng(seed=1234)
noise = noise_magnitude * rng.standard_normal(X.shape)
X += noise
print(f"Data dimensions = {X.shape} (space, time)")
# ### 1. Optimized DMD
# <a id='optdmd'></a>
# To perform [Optimized DMD](https://doi.org/10.1137/M1124176), use the `BOPDMD` module with `num_trials=0`.
# - Adjust the `svd_rank` parameter to control the number of spatiotemporal modes computed.
# - Fit the model with the `fit` function.
# - For the `BOPDMD` module, this function requires both the snapshots `X` and the times `t`.
# - Plot results using the `plot_summary` function.
# - See plotting tool documentation [[docs]](https://pydmd.github.io/PyDMD/plotter.html) for more information on customization options.
# In[3]:
# Build an Optimized DMD model with 11 spatiotemporal modes.
bopdmd = BOPDMD(svd_rank=11, num_trials=0)
# Fit the Optimized DMD model.
bopdmd.fit(X, t)
# Plot a summary of the key spatiotemporal modes.
plot_summary(
bopdmd,
figsize=(12, 6), # Figure size.
index_modes=(0, 1, 3), # Indices of the modes to plot.
snapshots_shape=(ny, nx), # Shape of the modes.
order="F", # Order to use when reshaping the modes.
flip_continuous_axes=True, # Rotate the continuous-time eig plot.
)
# In[4]:
# Set the plot_summary arguments for later function calls.
plot_summary_kwargs = {}
plot_summary_kwargs["figsize"] = (12, 6)
plot_summary_kwargs["index_modes"] = (0, 1, 3)
plot_summary_kwargs["snapshots_shape"] = (ny, nx)
plot_summary_kwargs["order"] = "F"
plot_summary_kwargs["flip_continuous_axes"] = True
# ### 2. Optimized DMD with Bagging (BOP-DMD)
# <a id='bopdmd'></a>
# To perform [BOP-DMD](https://doi.org/10.1098/rsta.2021.0199), use the `BOPDMD` module with `num_trials=k` for positive integer `k`.
# - Set the `trial_size` parameter to control the amount of data to use per bag.
# - `plot_summary` now displays the average spatiotemporal modes across trials.
# - When multiple trials are performed, UQ metrics can also be plotted:
# - Use `plot_eig_uq` for eigenvalue UQ metrics.
# - Use `plot_mode_uq` for mode UQ metrics.
# In[5]:
# Build a BOP-DMD model with 11 spatiotemporal modes, and 100 bagging trials,
# where each trial uses 80% of the total number of snapshots per trial.
bopdmd = BOPDMD(svd_rank=11, num_trials=100, trial_size=0.8)
bopdmd.fit(X, t)
plot_summary(bopdmd, **plot_summary_kwargs)
# Plot eigenvalue UQ metrics.
bopdmd.plot_eig_uq(figsize=(4, 2), flip_axes=True, draw_axes=True)
# Plot mode UQ metrics.
bopdmd.plot_mode_uq(
figsize=(14, 4),
plot_modes=(0, 1, 3, 5),
modes_shape=(ny, nx),
order="F",
)
# ### 3. BOP-DMD with Eigenvalue Constraints
# <a id='eig'></a>
# Set the `eig_constraints` parameter to constrain the eigenvalue structure.
# - Can be a set of preset constraints, which may be combined:
# - `"stable"` = constrain eigenvalues to the left half of the complex plane.
# - `"imag"` = constrain eigenvalues to the imaginary axis of the complex plane.
# - `"conjugate_pairs"` = eigenvalues must be present with their complex conjugate.
# - Can also be a custom function that will be applied to the eigenvalues.
# In[6]:
bopdmd = BOPDMD(
svd_rank=11,
num_trials=100,
trial_size=0.8,
# Constrain the eigenvalues to be imaginary
# AND to always come in complex conjugate pairs.
eig_constraints={"imag", "conjugate_pairs"},
)
bopdmd.fit(X, t)
plot_summary(bopdmd, **plot_summary_kwargs)
# View the eigenvalue UQ metrics for comparison.
bopdmd.plot_eig_uq(figsize=(4, 2), flip_axes=True, draw_axes=True)
# ### 4. Using Verbose Outputs
# <a id='verbose'></a>
# Turn on verbosity with the `varpro_opts_dict` parameter.
# - Verbosity allows users to see the iterative progress of the variable projection routine.
# - Verbosity also allows users to see the convergence status of the first 5 bagging trials.
# - See the `BOPDMDOperator` documentation [[docs]](https://pydmd.github.io/PyDMD/bopdmd.html) for more information on all of the parameters that can be set with the `varpro_opts_dict`.
# In[7]:
bopdmd = BOPDMD(
svd_rank=11,
num_trials=100,
trial_size=0.8,
eig_constraints={"imag", "conjugate_pairs"},
# Turn on verbosity.
varpro_opts_dict={"verbose": True},
)
bopdmd.fit(X, t)
# ### 5. Removing Bad Bags
# <a id='bag-fail'></a>
# Omit the results of non-converged trials by setting `remove_bad_bags=True` (defaults to `False`).
# - Doing this activates the parameters `bag_warning` and `bag_maxfail`:
# - `bag_warning` = number of consecutive non-converged trials at which to warn the user. (default=100)
# - `bag_maxfail` = number of consecutive non-converged trials to tolerate before quitting. (default=200)
# - Use negative integer arguments for no warning or stopping condition.
# - Whether or not a trial converges depends on the tolerance parameter, which is controlled by `tol`.
# - Set this parameter with the `varpro_opts_dict`.
# - Use verbosity to gauge what a realistic tolerance might look like for your data.
# In[8]:
bopdmd = BOPDMD(
svd_rank=11,
num_trials=100,
trial_size=0.8,
eig_constraints={"imag", "conjugate_pairs"},
# Adjust the tolerance so that convergence is more reasonable.
varpro_opts_dict={"verbose": True, "tol": 0.12},
# BOP-DMD will run until 100 trials converge,
# OR until 200 consecutive trials fail to converge.
remove_bad_bags=True,
)
bopdmd.fit(X, t)
# ### 6. Applying Data Preprocessors
# <a id='preprocess'></a>
# `BOPDMD` models can be used with tools from the `pydmd.preprocessing` suite.
# - Simply wrap your `BOPDMD` model with the desired preprocessing tool.
# - Calls to `fit` will now require setting the time vector `t` with a keyword argument.
# In[9]:
# BOP-DMD with zero mean centered data.
bopdmd = BOPDMD(
svd_rank=10, # Use an even rank due to zero mean preprocessing.
num_trials=100,
trial_size=0.8,
eig_constraints={"imag", "conjugate_pairs"},
varpro_opts_dict={"verbose": True, "tol": 0.2},
remove_bad_bags=True,
)
bopdmd = zero_mean_preprocessing(bopdmd)
bopdmd.fit(X, t=t)
# Same plot_summary call, but plot modes 1, 3, and 5.
plot_summary_kwargs["index_modes"] = (0, 2, 4)
plot_summary(bopdmd, **plot_summary_kwargs)
# In[ ]: