-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_sampling.py
122 lines (104 loc) · 4.96 KB
/
eval_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import torch.utils.tensorboard
import tqdm
import argparse
from utils import eval_opt as utils_eval
from utils import misc as utils_misc
from utils.transforms import get_edge_transform
from utils.eval_opt import generate_multi_confs
from utils.evaluation import evaluate_conf
import pickle
import copy
from functools import partial
import multiprocessing
import numpy as np
from rdkit import Chem
torch.multiprocessing.set_sharing_strategy('file_system')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=2020)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('--ckpt_iter', type=int, default=None)
# parser.add_argument('--dump_path', type=str, default=None)
parser.add_argument('--eval_propose_net_type', type=str, choices=['online_rdkit', 'random'])
parser.add_argument('--eval_noise', type=float)
args = parser.parse_args()
return args
def main():
args = get_args()
utils_misc.seed_all(args.seed)
logger = utils_misc.get_logger('eval_sampling', None)
logger.info(args)
ckpt_config = utils_misc.load_config(os.path.join(args.ckpt_path, 'config.yml'))
ckpt_config.eval.eval_propose_net_type = args.eval_propose_net_type
ckpt_config.eval.eval_noise = args.eval_noise
# Dataset and dataloader
edge_transform = get_edge_transform(
ckpt_config.data.edge_transform_mode, ckpt_config.data.aux_edge_order,
ckpt_config.data.cutoff, ckpt_config.data.cutoff_pos)
test_dset = utils_misc.get_conf_dataset(ckpt_config.data, ckpt_config.data.test_dataset, edge_transform,
rdkit_pos_mode='online', rdkit_mol=False, n_gen_samples='auto',
mode='relax_lowest')
logger.info('TestSet %d' % len(test_dset))
# Model
logger.info(f'Loading model from {args.ckpt_path}')
if args.ckpt_iter is None:
ckpt_restore = utils_misc.CheckpointManager(args.ckpt_path, logger=logger).load_best()
else:
ckpt_restore = utils_misc.CheckpointManager(args.ckpt_path, logger=logger).load_with_iteration(args.ckpt_iter)
model = utils_misc.build_pos_net(ckpt_config).to(args.device)
model.load_state_dict(ckpt_restore['state_dict'])
logger.info(f'# trainable parameters: {utils_misc.count_parameters(model) / 1e6:.4f} M')
# utils_eval.validate_sampling_rdkit(test_dset, ckpt_config, args.device, logger)
# test(ckpt_restore["iteration"], test_dset, model, logger, args.device, ckpt_config, mode='rdkit', save_dir=None, cal_scores=True)
test(ckpt_restore["iteration"], test_dset, model, logger, args.device, ckpt_config, save_dir=None, cal_scores=True)
def test(it, test_dset, model, logger, device, config, save_dir, mode='model', cal_scores=False, size_limit=None):
ref_mols, gen_mols, all_gen_results = generate_multi_confs(
dset=test_dset,
model=model,
eval_propose_net_type=config.eval.eval_propose_net_type,
val_batch_size=config.train.batch_size * 2,
eval_noise=config.eval.eval_noise,
device=device,
heavy_only=config.data.heavy_only,
ff_opt=config.eval.ff_opt,
n_samples='auto', mode=mode, return_gen_results=True, size_limit=size_limit)
if save_dir:
if not os.path.exists(os.path.join(save_dir, 'test')):
os.mkdir(os.path.join(save_dir, 'test'))
out_path = os.path.join(save_dir, 'test', 'step%d.pkl' % it)
with open(out_path, 'wb') as fout:
pickle.dump(all_gen_results, fout)
logger.info('Save generated samples to %s done!' % out_path)
if cal_scores:
data_list = []
for r in all_gen_results:
rdmol = copy.deepcopy(r['mol'])
rdmol.RemoveAllConformers()
if config.data.heavy_only:
rdmol = Chem.RemoveHs(rdmol)
pos_ref = torch.from_numpy(r['gt_pos'])
if mode == 'rdkit':
pos_gen = torch.from_numpy(r['rdkit_pos'])
else:
pos_gen = torch.from_numpy(r['gen_pos'])
data_list.append((rdmol, pos_ref, pos_gen))
func = partial(evaluate_conf, useFF=False, threshold=config.eval.delta)
covs = []
mats = []
junks = []
with multiprocessing.Pool(16) as pool:
for result in pool.starmap(func, tqdm.tqdm(data_list, total=len(data_list))):
covs.append(result[0])
mats.append(result[1])
junks.append(result[2])
covs = np.array(covs)
mats = np.array(mats)
junks = np.array(junks)
logger.info(
'Coverage Mean: %.4f | Coverage Median: %.4f | Mismatch Mean: %.4f | Mismatch Median: %.4f | '
'Match Mean: %.4f | Match Median: %.4f' % (
covs.mean(), np.median(covs), junks.mean(), np.median(junks), mats.mean(), np.median(mats)))
if __name__ == '__main__':
main()