-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_conf.py
175 lines (150 loc) · 8.1 KB
/
train_conf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import torch.utils.tensorboard
import tqdm
from easydict import EasyDict
from torch.utils.data import DataLoader
from models.conf_model import compute_min_loss, get_init_pos
from utils import eval_opt as utils_eval
from utils import misc as utils_misc
from utils.parsing_args import get_conf_opt_args
from utils.transforms import get_edge_transform
torch.multiprocessing.set_sharing_strategy('file_system')
def main():
args, config = get_conf_opt_args()
# Logging
if args.logging:
log_dir = utils_misc.get_new_log_dir(root=args.log_dir, prefix=config['data']['dataset_name'], tag=args.tag)
logger = utils_misc.get_logger('train', log_dir)
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
ckpt_mgr = utils_misc.CheckpointManager(log_dir, logger=logger, keep_n_ckpt=args.keep_n_ckpt)
# save config
utils_misc.save_config(os.path.join(log_dir, 'config.yml'), config)
else:
logger = utils_misc.get_logger('train', None)
writer = utils_misc.BlackHole()
ckpt_mgr = utils_misc.BlackHole()
config = EasyDict(config)
utils_misc.seed_all(config.train.seed)
logger.info(args)
edge_transform = get_edge_transform(
config.data.edge_transform_mode, config.data.aux_edge_order, config.data.cutoff, config.data.cutoff_pos)
train_dset = utils_misc.get_conf_dataset(config.data, config.data.train_dataset, edge_transform,
mode=config.data.dset_mode)
val_dset = utils_misc.get_conf_dataset(config.data, config.data.val_dataset, edge_transform,
mode=config.data.dset_mode)
test_dset = utils_misc.get_conf_dataset(config.data, config.data.test_dataset, edge_transform,
mode=config.data.dset_mode)
logger.info('TrainSet %d | ValSet %d | TestSet %d' % (len(train_dset), len(val_dset), len(test_dset)))
train_iterator = utils_misc.get_data_iterator(
DataLoader(
train_dset, batch_size=config.train.batch_size, collate_fn=utils_misc.collate_multi_labels,
num_workers=config.train.num_workers, prefetch_factor=8, shuffle=True, drop_last=True
))
val_loader = DataLoader(
val_dset, batch_size=config.train.batch_size * 2, collate_fn=utils_misc.collate_multi_labels,
num_workers=config.train.num_workers, prefetch_factor=8, shuffle=False, drop_last=False,
)
test_loader = DataLoader(
test_dset, batch_size=config.train.batch_size * 2, collate_fn=utils_misc.collate_multi_labels,
num_workers=config.train.num_workers, prefetch_factor=8, shuffle=False, drop_last=False,
)
# Model
logger.info('Building model...')
if args.resume is None:
model = utils_misc.build_pos_net(config).to(args.device)
else:
logger.info('Resuming from %s' % args.resume)
ckpt_mgr_resume = utils_misc.CheckpointManager(args.resume, logger=logger, keep_n_ckpt=args.keep_n_ckpt)
if args.resume_iter is None:
ckpt_resume = ckpt_mgr_resume.load_latest()
else:
ckpt_resume = ckpt_mgr_resume.load_with_iteration(args.resume_iter)
ckpt_config = ckpt_resume['config']
model = utils_misc.build_pos_net(ckpt_config).to(args.device)
model.load_state_dict(ckpt_resume['state_dict'])
config.update(ckpt_config)
logger.info(repr(model))
logger.info(f'# trainable parameters: {utils_misc.count_parameters(model) / 1e6:.4f} M')
# Optimizer and scheduler
optimizer = torch.optim.Adam(model.parameters(),
lr=config.train.lr,
weight_decay=config.train.weight_decay,
betas=(config.train.beta1, config.train.beta2)
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=config.train.sched_factor,
patience=config.train.sched_patience,
min_lr=config.train.min_lr
)
if args.resume:
logger.info('Restoring optimizer and scheduler from %s' % args.resume)
optimizer.load_state_dict(ckpt_resume['opt_state_dict'])
scheduler.load_state_dict(ckpt_resume['sche_state_dict'])
# Main loop
logger.info('Start training...')
try:
if args.resume is not None:
start_it = ckpt_resume['iteration'] + 1
utils_eval.validate_model(ckpt_resume['iteration'], val_loader, model, logger, args.device, writer=writer)
else:
start_it = 1
best_val_loss = float('inf')
best_val_iter = 0
patience = 0
logger.info('Evaluate RDKit baseline on the validation set')
utils_eval.validate_rdkit(val_loader, logger, args.device, writer=writer)
torch.cuda.empty_cache()
for it in tqdm.trange(start_it, config.train.max_iters + 1, dynamic_ncols=True, desc='Training'):
train(it, train_iterator, model, optimizer, logger, writer, args.device, config.train)
if it % config.train.val_freq == 0 or it == config.train.max_iters:
avg_val_loss = utils_eval.validate_model(it, val_loader, model, logger, args.device,
writer=writer, prefix='Validate')
if scheduler:
scheduler.step(avg_val_loss)
if avg_val_loss < best_val_loss:
patience = 0
best_val_loss = avg_val_loss
best_val_iter = it
logger.info(f'Best val loss achieves: {best_val_loss:.4f} at iter {best_val_iter}')
ckpt_mgr.save(model, optimizer, scheduler, config, avg_val_loss, it, logger)
else:
patience += 1
logger.info(f'Patience {patience} / {config.train.patience} '
f'Best val loss: {best_val_loss:.4f} at iter {best_val_iter}')
if patience == config.train.patience:
logger.info('Max patience! Stop training and evaluate on the test set!')
best_ckpt = ckpt_mgr.load_best()
model.load_state_dict(best_ckpt['state_dict'])
utils_eval.validate_model(it, test_loader, model, logger, args.device, prefix='Test')
logger.info('Evaluate RDKit baseline on the test set')
utils_eval.validate_rdkit(test_loader, logger, args.device)
break
except KeyboardInterrupt:
logger.info('Terminating...')
def train(it, train_iterator, model, optimizer, logger, writer, device, config):
model.train()
optimizer.zero_grad()
for _ in range(config.n_acc_batch):
batch, labels, meta_info, labels_slices = next(train_iterator)
batch = batch.to(torch.device(device))
labels = labels.to(device)
with torch.no_grad():
init_pos = get_init_pos(config.propose_net_type, batch, labels,
noise=config.noise_std, gt_aug_ratio=config.gt_aug_ratio,
noise_type=config.noise_type,
n_ref_samples=10, n_gen_samples=1, labels_slices=labels_slices)
gen_pos, all_pos = model(batch, init_pos)
conf_loss, n, match_labels = compute_min_loss(
batch, labels, gen_pos, labels_slices, n_gen_samples=1, return_match_labels=True)
loss = conf_loss / n
loss = loss / config.n_acc_batch
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm)
optimizer.step()
if it % config.train_report_iter == 0:
logger.info('[Train] Iter %04d | Loss %.6f | Lr %.4f ' % (it, loss.item(), optimizer.param_groups[0]['lr']))
writer.add_scalar('train/loss', loss, it)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], it)
writer.flush()
if __name__ == '__main__':
main()