-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
105 lines (83 loc) · 4.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
np.random.seed(0)
tf.set_random_seed(0)
class VAE:
def __init__(self, n_input, n_z, n_hidden_units, batch_size, learning_rate):
self.n_input = n_input
self.n_z = n_z
self.n_hidden_units = n_hidden_units
self.batch_size = batch_size
self.learning_rate = learning_rate
# define placeholder
self.x = tf.placeholder(dtype=tf.float32, shape=[None, self.n_input], name='x')
self._build_network()
# define loss
self.recon_loss = tf.reduce_sum(tf.squared_difference(self.x, self.x_mean), 1)
# self.recon_loss = tf.reduce_sum(tf.square(self.x - self.x_mean) / (2 * tf.exp(self.x_sigma)), 1)
# self.recon_loss = -tf.reduce_sum(self.x * tf.log(1e-10 + self.x_mean)
# + (1 - self.x) * tf.log(1e-10 + 1 - self.x_mean), 1)
self.latent_loss = -0.5 * tf.reduce_sum(1.0 + self.z_sigma - tf.square(self.z_mean) - tf.exp(self.z_sigma), 1)
self.loss = tf.reduce_mean(self.recon_loss + self.latent_loss)
self.opt = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# summary
tf.summary.scalar('recon_loss', tf.reduce_mean(self.recon_loss))
tf.summary.scalar('latent_loss', tf.reduce_mean(self.latent_loss))
tf.summary.scalar('total_loss', self.loss)
self.loss_logger = tf.summary.merge_all()
def _build_network(self):
self.z_mean, self.z_sigma = self._build_encoder()
epsilon = tf.random_normal((self.batch_size, self.n_z), mean=0.0, stddev=1.0)
self.z = tf.multiply(tf.sqrt(tf.exp(self.z_sigma)), epsilon) + self.z_mean
self.x_mean = self._build_decoder()
def _build_encoder(self):
weights_init = tf.random_normal_initializer(stddev=0.01)
bias_init = tf.random_normal_initializer(stddev=0.01)
with tf.variable_scope('encoder'):
encoder_h = tf.layers.dense(self.x, self.n_hidden_units, tf.nn.tanh,
kernel_initializer=weights_init, bias_initializer=bias_init,
name='encoder_h')
z_mean = tf.layers.dense(encoder_h, self.n_z,
kernel_initializer=weights_init, bias_initializer=bias_init,
name='z_mean')
z_sigma = tf.layers.dense(encoder_h, self.n_z,
kernel_initializer=weights_init, bias_initializer=bias_init,
name='z_log_sigma_square')
return z_mean, z_sigma
def _build_decoder(self):
weights_init = tf.random_normal_initializer(stddev=0.01)
bias_init = tf.random_normal_initializer(stddev=0.01)
with tf.variable_scope('decoder'):
decoder_h = tf.layers.dense(self.z, self.n_hidden_units, tf.nn.tanh,
kernel_initializer=weights_init, bias_initializer=bias_init,
name='decoder_h')
x_mean = tf.layers.dense(decoder_h, self.n_input, tf.nn.sigmoid,
kernel_initializer=weights_init, bias_initializer=bias_init,
name='x_mean')
return x_mean
if __name__ == '__main__':
n_z = 10
batch_size = 100
total_epoch = 200
model = VAE(n_input=784, n_z=n_z, n_hidden_units=500, batch_size=batch_size, learning_rate=0.001)
sess = tf.InteractiveSession()
saver = tf.train.Saver()
writer = tf.summary.FileWriter('save/square')
sess.run(tf.global_variables_initializer())
# load dataset and train
mnist = input_data.read_data_sets('MNIST_data/')
n_samples = mnist.train.num_examples
total_batch = int(n_samples / batch_size)
display_epoch = 5
for epoch in range(1, total_epoch + 1):
for i in range(total_batch):
batch_x, _ = mnist.train.next_batch(batch_size)
_, batch_loss, loss_summary = sess.run([model.opt, model.loss, model.loss_logger],
feed_dict={model.x: batch_x})
if (i + 1) % total_batch == 0:
writer.add_summary(loss_summary, epoch)
# Display
if epoch % display_epoch == 0:
print('Epoch: %d \t loss=%.4f' % (epoch, batch_loss))
saver.save(sess, 'save/square/vae_mnist_model', total_epoch)