forked from lightningnetwork/lnd
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchain_arbitrator.go
1415 lines (1184 loc) · 44.6 KB
/
chain_arbitrator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package contractcourt
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcwallet/walletdb"
"github.com/lightningnetwork/lnd/chainio"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/clock"
"github.com/lightningnetwork/lnd/fn/v2"
"github.com/lightningnetwork/lnd/graph/db/models"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/labels"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
)
// ErrChainArbExiting signals that the chain arbitrator is shutting down.
var ErrChainArbExiting = errors.New("ChainArbitrator exiting")
// ResolutionMsg is a message sent by resolvers to outside sub-systems once an
// outgoing contract has been fully resolved. For multi-hop contracts, if we
// resolve the outgoing contract, we'll also need to ensure that the incoming
// contract is resolved as well. We package the items required to resolve the
// incoming contracts within this message.
type ResolutionMsg struct {
// SourceChan identifies the channel that this message is being sent
// from. This is the channel's short channel ID.
SourceChan lnwire.ShortChannelID
// HtlcIndex is the index of the contract within the original
// commitment trace.
HtlcIndex uint64
// Failure will be non-nil if the incoming contract should be canceled
// all together. This can happen if the outgoing contract was dust, if
// if the outgoing HTLC timed out.
Failure lnwire.FailureMessage
// PreImage will be non-nil if the incoming contract can successfully
// be redeemed. This can happen if we learn of the preimage from the
// outgoing HTLC on-chain.
PreImage *[32]byte
}
// ChainArbitratorConfig is a configuration struct that contains all the
// function closures and interface that required to arbitrate on-chain
// contracts for a particular chain.
type ChainArbitratorConfig struct {
// ChainHash is the chain that this arbitrator is to operate within.
ChainHash chainhash.Hash
// IncomingBroadcastDelta is the delta that we'll use to decide when to
// broadcast our commitment transaction if we have incoming htlcs. This
// value should be set based on our current fee estimation of the
// commitment transaction. We use this to determine when we should
// broadcast instead of just the HTLC timeout, as we want to ensure
// that the commitment transaction is already confirmed, by the time the
// HTLC expires. Otherwise we may end up not settling the htlc on-chain
// because the other party managed to time it out.
IncomingBroadcastDelta uint32
// OutgoingBroadcastDelta is the delta that we'll use to decide when to
// broadcast our commitment transaction if there are active outgoing
// htlcs. This value can be lower than the incoming broadcast delta.
OutgoingBroadcastDelta uint32
// NewSweepAddr is a function that returns a new address under control
// by the wallet. We'll use this to sweep any no-delay outputs as a
// result of unilateral channel closes.
//
// NOTE: This SHOULD return a p2wkh script.
NewSweepAddr func() ([]byte, error)
// PublishTx reliably broadcasts a transaction to the network. Once
// this function exits without an error, then they transaction MUST
// continually be rebroadcast if needed.
PublishTx func(*wire.MsgTx, string) error
// DeliverResolutionMsg is a function that will append an outgoing
// message to the "out box" for a ChannelLink. This is used to cancel
// backwards any HTLC's that are either dust, we're timing out, or
// settling on-chain to the incoming link.
DeliverResolutionMsg func(...ResolutionMsg) error
// MarkLinkInactive is a function closure that the ChainArbitrator will
// use to mark that active HTLC's shouldn't be attempted to be routed
// over a particular channel. This function will be called in that a
// ChannelArbitrator decides that it needs to go to chain in order to
// resolve contracts.
//
// TODO(roasbeef): rename, routing based
MarkLinkInactive func(wire.OutPoint) error
// ContractBreach is a function closure that the ChainArbitrator will
// use to notify the BreachArbitrator about a contract breach. It should
// only return a non-nil error when the BreachArbitrator has preserved
// the necessary breach info for this channel point. Once the breach
// resolution is persisted in the ChannelArbitrator, it will be safe
// to mark the channel closed.
ContractBreach func(wire.OutPoint, *lnwallet.BreachRetribution) error
// IsOurAddress is a function that returns true if the passed address
// is known to the underlying wallet. Otherwise, false should be
// returned.
IsOurAddress func(btcutil.Address) bool
// IncubateOutputs sends either an incoming HTLC, an outgoing HTLC, or
// both to the utxo nursery. Once this function returns, the nursery
// should have safely persisted the outputs to disk, and should start
// the process of incubation. This is used when a resolver wishes to
// pass off the output to the nursery as we're only waiting on an
// absolute/relative item block.
IncubateOutputs func(wire.OutPoint,
fn.Option[lnwallet.OutgoingHtlcResolution],
fn.Option[lnwallet.IncomingHtlcResolution],
uint32, fn.Option[int32]) error
// PreimageDB is a global store of all known pre-images. We'll use this
// to decide if we should broadcast a commitment transaction to claim
// an HTLC on-chain.
PreimageDB WitnessBeacon
// Notifier is an instance of a chain notifier we'll use to watch for
// certain on-chain events.
Notifier chainntnfs.ChainNotifier
// Mempool is the a mempool watcher that allows us to watch for events
// happened in mempool.
Mempool chainntnfs.MempoolWatcher
// Signer is a signer backed by the active lnd node. This should be
// capable of producing a signature as specified by a valid
// SignDescriptor.
Signer input.Signer
// FeeEstimator will be used to return fee estimates.
FeeEstimator chainfee.Estimator
// ChainIO allows us to query the state of the current main chain.
ChainIO lnwallet.BlockChainIO
// DisableChannel disables a channel, resulting in it not being able to
// forward payments.
DisableChannel func(wire.OutPoint) error
// Sweeper allows resolvers to sweep their final outputs.
Sweeper UtxoSweeper
// Registry is the invoice database that is used by resolvers to lookup
// preimages and settle invoices.
Registry Registry
// NotifyClosedChannel is a function closure that the ChainArbitrator
// will use to notify the ChannelNotifier about a newly closed channel.
NotifyClosedChannel func(wire.OutPoint)
// NotifyFullyResolvedChannel is a function closure that the
// ChainArbitrator will use to notify the ChannelNotifier about a newly
// resolved channel. The main difference to NotifyClosedChannel is that
// in case of a local force close the NotifyClosedChannel is called when
// the published commitment transaction confirms while
// NotifyFullyResolvedChannel is only called when the channel is fully
// resolved (which includes sweeping any time locked funds).
NotifyFullyResolvedChannel func(point wire.OutPoint)
// OnionProcessor is used to decode onion payloads for on-chain
// resolution.
OnionProcessor OnionProcessor
// PaymentsExpirationGracePeriod indicates a time window we let the
// other node to cancel an outgoing htlc that our node has initiated and
// has timed out.
PaymentsExpirationGracePeriod time.Duration
// IsForwardedHTLC checks for a given htlc, identified by channel id and
// htlcIndex, if it is a forwarded one.
IsForwardedHTLC func(chanID lnwire.ShortChannelID, htlcIndex uint64) bool
// Clock is the clock implementation that ChannelArbitrator uses.
// It is useful for testing.
Clock clock.Clock
// SubscribeBreachComplete is used by the breachResolver to register a
// subscription that notifies when the breach resolution process is
// complete.
SubscribeBreachComplete func(op *wire.OutPoint, c chan struct{}) (
bool, error)
// PutFinalHtlcOutcome stores the final outcome of an htlc in the
// database.
PutFinalHtlcOutcome func(chanId lnwire.ShortChannelID,
htlcId uint64, settled bool) error
// HtlcNotifier is an interface that htlc events are sent to.
HtlcNotifier HtlcNotifier
// Budget is the configured budget for the arbitrator.
Budget BudgetConfig
// QueryIncomingCircuit is used to find the outgoing HTLC's
// corresponding incoming HTLC circuit. It queries the circuit map for
// a given outgoing circuit key and returns the incoming circuit key.
//
// TODO(yy): this is a hacky way to get around the cycling import issue
// as we cannot import `htlcswitch` here. A proper way is to define an
// interface here that asks for method `LookupOpenCircuit`,
// meanwhile, turn `PaymentCircuit` into an interface or bring it to a
// lower package.
QueryIncomingCircuit func(circuit models.CircuitKey) *models.CircuitKey
// AuxLeafStore is an optional store that can be used to store auxiliary
// leaves for certain custom channel types.
AuxLeafStore fn.Option[lnwallet.AuxLeafStore]
// AuxSigner is an optional signer that can be used to sign auxiliary
// leaves for certain custom channel types.
AuxSigner fn.Option[lnwallet.AuxSigner]
// AuxResolver is an optional interface that can be used to modify the
// way contracts are resolved.
AuxResolver fn.Option[lnwallet.AuxContractResolver]
}
// ChainArbitrator is a sub-system that oversees the on-chain resolution of all
// active, and channel that are in the "pending close" state. Within the
// contractcourt package, the ChainArbitrator manages a set of active
// ContractArbitrators. Each ContractArbitrators is responsible for watching
// the chain for any activity that affects the state of the channel, and also
// for monitoring each contract in order to determine if any on-chain activity is
// required. Outside sub-systems interact with the ChainArbitrator in order to
// forcibly exit a contract, update the set of live signals for each contract,
// and to receive reports on the state of contract resolution.
type ChainArbitrator struct {
started int32 // To be used atomically.
stopped int32 // To be used atomically.
// Embed the blockbeat consumer struct to get access to the method
// `NotifyBlockProcessed` and the `BlockbeatChan`.
chainio.BeatConsumer
sync.Mutex
// activeChannels is a map of all the active contracts that are still
// open, and not fully resolved.
activeChannels map[wire.OutPoint]*ChannelArbitrator
// activeWatchers is a map of all the active chainWatchers for channels
// that are still considered open.
activeWatchers map[wire.OutPoint]*chainWatcher
// cfg is the config struct for the arbitrator that contains all
// methods and interface it needs to operate.
cfg ChainArbitratorConfig
// chanSource will be used by the ChainArbitrator to fetch all the
// active channels that it must still watch over.
chanSource *channeldb.DB
// beat is the current best known blockbeat.
beat chainio.Blockbeat
quit chan struct{}
wg sync.WaitGroup
}
// NewChainArbitrator returns a new instance of the ChainArbitrator using the
// passed config struct, and backing persistent database.
func NewChainArbitrator(cfg ChainArbitratorConfig,
db *channeldb.DB) *ChainArbitrator {
c := &ChainArbitrator{
cfg: cfg,
activeChannels: make(map[wire.OutPoint]*ChannelArbitrator),
activeWatchers: make(map[wire.OutPoint]*chainWatcher),
chanSource: db,
quit: make(chan struct{}),
}
// Mount the block consumer.
c.BeatConsumer = chainio.NewBeatConsumer(c.quit, c.Name())
return c
}
// Compile-time check for the chainio.Consumer interface.
var _ chainio.Consumer = (*ChainArbitrator)(nil)
// arbChannel is a wrapper around an open channel that channel arbitrators
// interact with.
type arbChannel struct {
// channel is the in-memory channel state.
channel *channeldb.OpenChannel
// c references the chain arbitrator and is used by arbChannel
// internally.
c *ChainArbitrator
}
// NewAnchorResolutions returns the anchor resolutions for currently valid
// commitment transactions.
//
// NOTE: Part of the ArbChannel interface.
func (a *arbChannel) NewAnchorResolutions() (*lnwallet.AnchorResolutions,
error) {
// Get a fresh copy of the database state to base the anchor resolutions
// on. Unfortunately the channel instance that we have here isn't the
// same instance that is used by the link.
chanPoint := a.channel.FundingOutpoint
channel, err := a.c.chanSource.ChannelStateDB().FetchChannel(chanPoint)
if err != nil {
return nil, err
}
var chanOpts []lnwallet.ChannelOpt
a.c.cfg.AuxLeafStore.WhenSome(func(s lnwallet.AuxLeafStore) {
chanOpts = append(chanOpts, lnwallet.WithLeafStore(s))
})
a.c.cfg.AuxSigner.WhenSome(func(s lnwallet.AuxSigner) {
chanOpts = append(chanOpts, lnwallet.WithAuxSigner(s))
})
a.c.cfg.AuxResolver.WhenSome(func(s lnwallet.AuxContractResolver) {
chanOpts = append(chanOpts, lnwallet.WithAuxResolver(s))
})
chanMachine, err := lnwallet.NewLightningChannel(
a.c.cfg.Signer, channel, nil, chanOpts...,
)
if err != nil {
return nil, err
}
return chanMachine.NewAnchorResolutions()
}
// ForceCloseChan should force close the contract that this attendant is
// watching over. We'll use this when we decide that we need to go to chain. It
// should in addition tell the switch to remove the corresponding link, such
// that we won't accept any new updates.
//
// NOTE: Part of the ArbChannel interface.
func (a *arbChannel) ForceCloseChan() (*wire.MsgTx, error) {
// First, we mark the channel as borked, this ensure
// that no new state transitions can happen, and also
// that the link won't be loaded into the switch.
if err := a.channel.MarkBorked(); err != nil {
return nil, err
}
// With the channel marked as borked, we'll now remove
// the link from the switch if its there. If the link
// is active, then this method will block until it
// exits.
chanPoint := a.channel.FundingOutpoint
if err := a.c.cfg.MarkLinkInactive(chanPoint); err != nil {
log.Errorf("unable to mark link inactive: %v", err)
}
// Now that we know the link can't mutate the channel
// state, we'll read the channel from disk the target
// channel according to its channel point.
channel, err := a.c.chanSource.ChannelStateDB().FetchChannel(chanPoint)
if err != nil {
return nil, err
}
var chanOpts []lnwallet.ChannelOpt
a.c.cfg.AuxLeafStore.WhenSome(func(s lnwallet.AuxLeafStore) {
chanOpts = append(chanOpts, lnwallet.WithLeafStore(s))
})
a.c.cfg.AuxSigner.WhenSome(func(s lnwallet.AuxSigner) {
chanOpts = append(chanOpts, lnwallet.WithAuxSigner(s))
})
a.c.cfg.AuxResolver.WhenSome(func(s lnwallet.AuxContractResolver) {
chanOpts = append(chanOpts, lnwallet.WithAuxResolver(s))
})
// Finally, we'll force close the channel completing
// the force close workflow.
chanMachine, err := lnwallet.NewLightningChannel(
a.c.cfg.Signer, channel, nil, chanOpts...,
)
if err != nil {
return nil, err
}
closeSummary, err := chanMachine.ForceClose(
lnwallet.WithSkipContractResolutions(),
)
if err != nil {
return nil, err
}
return closeSummary.CloseTx, nil
}
// newActiveChannelArbitrator creates a new instance of an active channel
// arbitrator given the state of the target channel.
func newActiveChannelArbitrator(channel *channeldb.OpenChannel,
c *ChainArbitrator, chanEvents *ChainEventSubscription) (*ChannelArbitrator, error) {
// TODO(roasbeef): fetch best height (or pass in) so can ensure block
// epoch delivers all the notifications to
chanPoint := channel.FundingOutpoint
log.Tracef("Creating ChannelArbitrator for ChannelPoint(%v)", chanPoint)
// Next we'll create the matching configuration struct that contains
// all interfaces and methods the arbitrator needs to do its job.
arbCfg := ChannelArbitratorConfig{
ChanPoint: chanPoint,
Channel: c.getArbChannel(channel),
ShortChanID: channel.ShortChanID(),
MarkCommitmentBroadcasted: channel.MarkCommitmentBroadcasted,
MarkChannelClosed: func(summary *channeldb.ChannelCloseSummary,
statuses ...channeldb.ChannelStatus) error {
err := channel.CloseChannel(summary, statuses...)
if err != nil {
return err
}
c.cfg.NotifyClosedChannel(summary.ChanPoint)
return nil
},
IsPendingClose: false,
ChainArbitratorConfig: c.cfg,
ChainEvents: chanEvents,
PutResolverReport: func(tx kvdb.RwTx,
report *channeldb.ResolverReport) error {
return c.chanSource.PutResolverReport(
tx, c.cfg.ChainHash, &chanPoint, report,
)
},
FetchHistoricalChannel: func() (*channeldb.OpenChannel, error) {
chanStateDB := c.chanSource.ChannelStateDB()
return chanStateDB.FetchHistoricalChannel(&chanPoint)
},
FindOutgoingHTLCDeadline: func(
htlc channeldb.HTLC) fn.Option[int32] {
return c.FindOutgoingHTLCDeadline(
channel.ShortChanID(), htlc,
)
},
}
// The final component needed is an arbitrator log that the arbitrator
// will use to keep track of its internal state using a backed
// persistent log.
//
// TODO(roasbeef); abstraction leak...
// * rework: adaptor method to set log scope w/ factory func
chanLog, err := newBoltArbitratorLog(
c.chanSource.Backend, arbCfg, c.cfg.ChainHash, chanPoint,
)
if err != nil {
return nil, err
}
arbCfg.MarkChannelResolved = func() error {
if c.cfg.NotifyFullyResolvedChannel != nil {
c.cfg.NotifyFullyResolvedChannel(chanPoint)
}
return c.ResolveContract(chanPoint)
}
// Finally, we'll need to construct a series of htlc Sets based on all
// currently known valid commitments.
htlcSets := make(map[HtlcSetKey]htlcSet)
htlcSets[LocalHtlcSet] = newHtlcSet(channel.LocalCommitment.Htlcs)
htlcSets[RemoteHtlcSet] = newHtlcSet(channel.RemoteCommitment.Htlcs)
pendingRemoteCommitment, err := channel.RemoteCommitChainTip()
if err != nil && err != channeldb.ErrNoPendingCommit {
return nil, err
}
if pendingRemoteCommitment != nil {
htlcSets[RemotePendingHtlcSet] = newHtlcSet(
pendingRemoteCommitment.Commitment.Htlcs,
)
}
return NewChannelArbitrator(
arbCfg, htlcSets, chanLog,
), nil
}
// getArbChannel returns an open channel wrapper for use by channel arbitrators.
func (c *ChainArbitrator) getArbChannel(
channel *channeldb.OpenChannel) *arbChannel {
return &arbChannel{
channel: channel,
c: c,
}
}
// ResolveContract marks a contract as fully resolved within the database.
// This is only to be done once all contracts which were live on the channel
// before hitting the chain have been resolved.
func (c *ChainArbitrator) ResolveContract(chanPoint wire.OutPoint) error {
log.Infof("Marking ChannelPoint(%v) fully resolved", chanPoint)
// First, we'll we'll mark the channel as fully closed from the PoV of
// the channel source.
err := c.chanSource.ChannelStateDB().MarkChanFullyClosed(&chanPoint)
if err != nil {
log.Errorf("ChainArbitrator: unable to mark ChannelPoint(%v) "+
"fully closed: %v", chanPoint, err)
return err
}
// Now that the channel has been marked as fully closed, we'll stop
// both the channel arbitrator and chain watcher for this channel if
// they're still active.
var arbLog ArbitratorLog
c.Lock()
chainArb := c.activeChannels[chanPoint]
delete(c.activeChannels, chanPoint)
chainWatcher := c.activeWatchers[chanPoint]
delete(c.activeWatchers, chanPoint)
c.Unlock()
if chainArb != nil {
arbLog = chainArb.log
if err := chainArb.Stop(); err != nil {
log.Warnf("unable to stop ChannelArbitrator(%v): %v",
chanPoint, err)
}
}
if chainWatcher != nil {
if err := chainWatcher.Stop(); err != nil {
log.Warnf("unable to stop ChainWatcher(%v): %v",
chanPoint, err)
}
}
// Once this has been marked as resolved, we'll wipe the log that the
// channel arbitrator was using to store its persistent state. We do
// this after marking the channel resolved, as otherwise, the
// arbitrator would be re-created, and think it was starting from the
// default state.
if arbLog != nil {
if err := arbLog.WipeHistory(); err != nil {
return err
}
}
return nil
}
// Start launches all goroutines that the ChainArbitrator needs to operate.
func (c *ChainArbitrator) Start(beat chainio.Blockbeat) error {
if !atomic.CompareAndSwapInt32(&c.started, 0, 1) {
return nil
}
// Set the current beat.
c.beat = beat
// First, we'll fetch all the channels that are still open, in order to
// collect them within our set of active contracts.
if err := c.loadOpenChannels(); err != nil {
return err
}
// In addition to the channels that we know to be open, we'll also
// launch arbitrators to finishing resolving any channels that are in
// the pending close state.
if err := c.loadPendingCloseChannels(); err != nil {
return err
}
// Now, we'll start all chain watchers in parallel to shorten start up
// duration. In neutrino mode, this allows spend registrations to take
// advantage of batch spend reporting, instead of doing a single rescan
// per chain watcher.
//
// NOTE: After this point, we Stop the chain arb to ensure that any
// lingering goroutines are cleaned up before exiting.
watcherErrs := make(chan error, len(c.activeWatchers))
var wg sync.WaitGroup
for _, watcher := range c.activeWatchers {
wg.Add(1)
go func(w *chainWatcher) {
defer wg.Done()
select {
case watcherErrs <- w.Start():
case <-c.quit:
watcherErrs <- ErrChainArbExiting
}
}(watcher)
}
// Once all chain watchers have been started, seal the err chan to
// signal the end of the err stream.
go func() {
wg.Wait()
close(watcherErrs)
}()
// stopAndLog is a helper function which shuts down the chain arb and
// logs errors if they occur.
stopAndLog := func() {
if err := c.Stop(); err != nil {
log.Errorf("ChainArbitrator could not shutdown: %v", err)
}
}
// Handle all errors returned from spawning our chain watchers. If any
// of them failed, we will stop the chain arb to shutdown any active
// goroutines.
for err := range watcherErrs {
if err != nil {
stopAndLog()
return err
}
}
// Before we start all of our arbitrators, we do a preliminary state
// lookup so that we can combine all of these lookups in a single db
// transaction.
var startStates map[wire.OutPoint]*chanArbStartState
err := kvdb.View(c.chanSource, func(tx walletdb.ReadTx) error {
for _, arbitrator := range c.activeChannels {
startState, err := arbitrator.getStartState(tx)
if err != nil {
return err
}
startStates[arbitrator.cfg.ChanPoint] = startState
}
return nil
}, func() {
startStates = make(
map[wire.OutPoint]*chanArbStartState,
len(c.activeChannels),
)
})
if err != nil {
stopAndLog()
return err
}
// Launch all the goroutines for each arbitrator so they can carry out
// their duties.
for _, arbitrator := range c.activeChannels {
startState, ok := startStates[arbitrator.cfg.ChanPoint]
if !ok {
stopAndLog()
return fmt.Errorf("arbitrator: %v has no start state",
arbitrator.cfg.ChanPoint)
}
if err := arbitrator.Start(startState, c.beat); err != nil {
stopAndLog()
return err
}
}
// Start our goroutine which will dispatch blocks to each arbitrator.
c.wg.Add(1)
go func() {
defer c.wg.Done()
c.dispatchBlocks()
}()
log.Infof("ChainArbitrator starting at height %d with %d chain "+
"watchers, %d channel arbitrators, and budget config=[%v]",
c.beat.Height(), len(c.activeWatchers), len(c.activeChannels),
&c.cfg.Budget)
// TODO(roasbeef): eventually move all breach watching here
return nil
}
// dispatchBlocks consumes a block epoch notification stream and dispatches
// blocks to each of the chain arb's active channel arbitrators. This function
// must be run in a goroutine.
func (c *ChainArbitrator) dispatchBlocks() {
// Consume block epochs until we receive the instruction to shutdown.
for {
select {
// Consume block epochs, exiting if our subscription is
// terminated.
case beat := <-c.BlockbeatChan:
// Set the current blockbeat.
c.beat = beat
// Send this blockbeat to all the active channels and
// wait for them to finish processing it.
c.handleBlockbeat(beat)
// Exit if the chain arbitrator is shutting down.
case <-c.quit:
return
}
}
}
// handleBlockbeat sends the blockbeat to all active channel arbitrator in
// parallel and wait for them to finish processing it.
func (c *ChainArbitrator) handleBlockbeat(beat chainio.Blockbeat) {
// Read the active channels in a lock.
c.Lock()
// Create a slice to record active channel arbitrator.
channels := make([]chainio.Consumer, 0, len(c.activeChannels))
watchers := make([]chainio.Consumer, 0, len(c.activeWatchers))
// Copy the active channels to the slice.
for _, channel := range c.activeChannels {
channels = append(channels, channel)
}
for _, watcher := range c.activeWatchers {
watchers = append(watchers, watcher)
}
c.Unlock()
// Iterate all the copied watchers and send the blockbeat to them.
err := chainio.DispatchConcurrent(beat, watchers)
if err != nil {
log.Errorf("Notify blockbeat for chainWatcher failed: %v", err)
}
// Iterate all the copied channels and send the blockbeat to them.
//
// NOTE: This method will timeout if the processing of blocks of the
// subsystems is too long (60s).
err = chainio.DispatchConcurrent(beat, channels)
if err != nil {
log.Errorf("Notify blockbeat for ChannelArbitrator failed: %v",
err)
}
// Notify the chain arbitrator has processed the block.
c.NotifyBlockProcessed(beat, err)
}
// republishClosingTxs will load any stored cooperative or unilateral closing
// transactions and republish them. This helps ensure propagation of the
// transactions in the event that prior publications failed.
func (c *ChainArbitrator) republishClosingTxs(
channel *channeldb.OpenChannel) error {
// If the channel has had its unilateral close broadcasted already,
// republish it in case it didn't propagate.
if channel.HasChanStatus(channeldb.ChanStatusCommitBroadcasted) {
err := c.rebroadcast(
channel, channeldb.ChanStatusCommitBroadcasted,
)
if err != nil {
return err
}
}
// If the channel has had its cooperative close broadcasted
// already, republish it in case it didn't propagate.
if channel.HasChanStatus(channeldb.ChanStatusCoopBroadcasted) {
err := c.rebroadcast(
channel, channeldb.ChanStatusCoopBroadcasted,
)
if err != nil {
return err
}
}
return nil
}
// rebroadcast is a helper method which will republish the unilateral or
// cooperative close transaction or a channel in a particular state.
//
// NOTE: There is no risk to calling this method if the channel isn't in either
// CommitmentBroadcasted or CoopBroadcasted, but the logs will be misleading.
func (c *ChainArbitrator) rebroadcast(channel *channeldb.OpenChannel,
state channeldb.ChannelStatus) error {
chanPoint := channel.FundingOutpoint
var (
closeTx *wire.MsgTx
kind string
err error
)
switch state {
case channeldb.ChanStatusCommitBroadcasted:
kind = "force"
closeTx, err = channel.BroadcastedCommitment()
case channeldb.ChanStatusCoopBroadcasted:
kind = "coop"
closeTx, err = channel.BroadcastedCooperative()
default:
return fmt.Errorf("unknown closing state: %v", state)
}
switch {
// This can happen for channels that had their closing tx published
// before we started storing it to disk.
case err == channeldb.ErrNoCloseTx:
log.Warnf("Channel %v is in state %v, but no %s closing tx "+
"to re-publish...", chanPoint, state, kind)
return nil
case err != nil:
return err
}
log.Infof("Re-publishing %s close tx(%v) for channel %v",
kind, closeTx.TxHash(), chanPoint)
label := labels.MakeLabel(
labels.LabelTypeChannelClose, &channel.ShortChannelID,
)
err = c.cfg.PublishTx(closeTx, label)
if err != nil && err != lnwallet.ErrDoubleSpend {
log.Warnf("Unable to broadcast %s close tx(%v): %v",
kind, closeTx.TxHash(), err)
}
return nil
}
// Stop signals the ChainArbitrator to trigger a graceful shutdown. Any active
// channel arbitrators will be signalled to exit, and this method will block
// until they've all exited.
func (c *ChainArbitrator) Stop() error {
if !atomic.CompareAndSwapInt32(&c.stopped, 0, 1) {
return nil
}
log.Info("ChainArbitrator shutting down...")
defer log.Debug("ChainArbitrator shutdown complete")
close(c.quit)
var (
activeWatchers = make(map[wire.OutPoint]*chainWatcher)
activeChannels = make(map[wire.OutPoint]*ChannelArbitrator)
)
// Copy the current set of active watchers and arbitrators to shutdown.
// We don't want to hold the lock when shutting down each watcher or
// arbitrator individually, as they may need to acquire this mutex.
c.Lock()
for chanPoint, watcher := range c.activeWatchers {
activeWatchers[chanPoint] = watcher
}
for chanPoint, arbitrator := range c.activeChannels {
activeChannels[chanPoint] = arbitrator
}
c.Unlock()
for chanPoint, watcher := range activeWatchers {
log.Tracef("Attempting to stop ChainWatcher(%v)",
chanPoint)
if err := watcher.Stop(); err != nil {
log.Errorf("unable to stop watcher for "+
"ChannelPoint(%v): %v", chanPoint, err)
}
}
for chanPoint, arbitrator := range activeChannels {
log.Tracef("Attempting to stop ChannelArbitrator(%v)",
chanPoint)
if err := arbitrator.Stop(); err != nil {
log.Errorf("unable to stop arbitrator for "+
"ChannelPoint(%v): %v", chanPoint, err)
}
}
c.wg.Wait()
return nil
}
// ContractUpdate is a message packages the latest set of active HTLCs on a
// commitment, and also identifies which commitment received a new set of
// HTLCs.
type ContractUpdate struct {
// HtlcKey identifies which commitment the HTLCs below are present on.
HtlcKey HtlcSetKey
// Htlcs are the of active HTLCs on the commitment identified by the
// above HtlcKey.
Htlcs []channeldb.HTLC
}
// ContractSignals is used by outside subsystems to notify a channel arbitrator
// of its ShortChannelID.
type ContractSignals struct {
// ShortChanID is the up to date short channel ID for a contract. This
// can change either if when the contract was added it didn't yet have
// a stable identifier, or in the case of a reorg.
ShortChanID lnwire.ShortChannelID
}
// UpdateContractSignals sends a set of active, up to date contract signals to
// the ChannelArbitrator which is has been assigned to the channel infield by
// the passed channel point.
func (c *ChainArbitrator) UpdateContractSignals(chanPoint wire.OutPoint,
signals *ContractSignals) error {
log.Infof("Attempting to update ContractSignals for ChannelPoint(%v)",
chanPoint)
c.Lock()
arbitrator, ok := c.activeChannels[chanPoint]
c.Unlock()
if !ok {
return fmt.Errorf("unable to find arbitrator")
}
arbitrator.UpdateContractSignals(signals)
return nil
}
// NotifyContractUpdate lets a channel arbitrator know that a new
// ContractUpdate is available. This calls the ChannelArbitrator's internal
// method NotifyContractUpdate which waits for a response on a done chan before
// returning. This method will return an error if the ChannelArbitrator is not
// in the activeChannels map. However, this only happens if the arbitrator is
// resolved and the related link would already be shut down.
func (c *ChainArbitrator) NotifyContractUpdate(chanPoint wire.OutPoint,
update *ContractUpdate) error {
c.Lock()
arbitrator, ok := c.activeChannels[chanPoint]
c.Unlock()
if !ok {
return fmt.Errorf("can't find arbitrator for %v", chanPoint)
}
arbitrator.notifyContractUpdate(update)
return nil
}
// GetChannelArbitrator safely returns the channel arbitrator for a given
// channel outpoint.
func (c *ChainArbitrator) GetChannelArbitrator(chanPoint wire.OutPoint) (
*ChannelArbitrator, error) {
c.Lock()
arbitrator, ok := c.activeChannels[chanPoint]
c.Unlock()
if !ok {
return nil, fmt.Errorf("unable to find arbitrator")
}
return arbitrator, nil
}
// forceCloseReq is a request sent from an outside sub-system to the arbitrator
// that watches a particular channel to broadcast the commitment transaction,
// and enter the resolution phase of the channel.
type forceCloseReq struct {
// errResp is a channel that will be sent upon either in the case of
// force close success (nil error), or in the case on an error.
//
// NOTE; This channel MUST be buffered.
errResp chan error
// closeTx is a channel that carries the transaction which ultimately
// closed out the channel.
closeTx chan *wire.MsgTx
}
// ForceCloseContract attempts to force close the channel infield by the passed
// channel point. A force close will immediately terminate the contract,
// causing it to enter the resolution phase. If the force close was successful,
// then the force close transaction itself will be returned.