-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathALSTP.py
297 lines (250 loc) · 9 KB
/
ALSTP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
import time
import argparse
import numpy as np
sys.path.append(os.getcwd())
from gensim.models.doc2vec import Doc2Vec
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
import config
import evaluate
import data_input
class ALSTP(nn.Module):
def __init__(self, fix_dim, num_steps, global_dim,
alpha, dropout, is_training):
super(ALSTP, self).__init__()
"""
Important Args.
fix_dim: pre-defined dimension from doc2vec.
num_steps: the number of previous purchased products.
alpha: the long-term preference updating rate.
dropout: drop rate.
"""
self.fix_dim = fix_dim
self.num_steps = num_steps
self.global_dim = global_dim
self.alpha = alpha
self.dropout = dropout
self.is_training = is_training
self.local_dim = int(0.4 * global_dim)
self.batch_size = 1 # without parallism
self.global_interest = torch.zeros(self.global_dim, 1).cuda()
self.gru = nn.GRU(self.global_dim, self.global_dim, 1)
for param in self.gru.parameters():
if param.dim() == 2:
nn.init.xavier_uniform_(param)
else:
param.data.fill_(0)
# convert items and queries
self.convert = nn.Linear(self.fix_dim, self.global_dim)
# local Attention part
self.queries_local = nn.Linear(self.global_dim, self.local_dim)
self.query_local = nn.Linear(self.global_dim, self.local_dim)
self.v_local = nn.Linear(self.local_dim, 1)
# global Attention part
self.query_global = nn.Linear(self.global_dim, 1)
# concatenation weights and bias
self.concate = nn.Sequential(
nn.Linear(3 * self.global_dim, 1 * self.global_dim),
# nn.ELU(),
# nn.Dropout(p=dropout),
# nn.Linear(2 * self.global_dim, 2 * self.global_dim),
# nn.ELU(),
# nn.Dropout(p=dropout),
# nn.Linear(2 * self.global_dim, self.global_dim),
nn.ELU()
)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
def init_global_interest(self):
""" When a new user starts, the global interest should be
initialized to zeros.
"""
self.global_interest.fill_(0)
def cons_global_interest(self):
final_state = self.state[-1].data.view(self.global_dim, 1)
self.global_interest = final_state
def update_global_interest(self):
""" final_state is the rnn final hidden state,
after a num_steps rounds, update.
"""
final_state = self.state[-1].data.view(self.global_dim, 1)
self.global_interest = self.alpha * self.global_interest + (
1-self.alpha) * final_state
def forward(self, item_pre, item_target, query_pre, query_target,
neg_samples, all_items):
# convert items and queies to the same space
item_pre = F.elu(self.convert(item_pre))
query_pre = F.elu(self.convert(query_pre))
query_target = F.elu(self.convert(query_target))
# for computing local context
self.state = self.global_interest.view(
1, self.batch_size, self.global_dim)
hidden, self.state = self.gru(
item_pre.view(self.num_steps,
self.batch_size, self.global_dim), self.state)
hidden = hidden.view(self.num_steps, self.global_dim)
local_weights = F.softmax(self.v_local(F.elu(
self.queries_local(query_pre) +
self.query_local(query_target))), dim=0)
localContext = torch.sum(hidden*local_weights, 0).view(1, self.global_dim)
# compute global context
_global_weights = F.softmax(torch.mm(
self.global_interest, F.elu(
self.query_global(query_target))), dim=0)
globalContext = (self.global_interest * _global_weights
).view(1, self.global_dim)
# concatenation part
concate = torch.cat([localContext, globalContext, query_target], 1)
concate_query = self.concate(concate)
if self.is_training:
item_target = F.elu(self.convert(item_target))
neg_samples = F.elu(self.convert(neg_samples))
pos_score = F.cosine_similarity(item_target, concate_query)
neg_scores = F.cosine_similarity(neg_samples, concate_query)
return pos_score, neg_scores
else:
all_items = F.elu(self.convert(all_items))
all_scores = F.cosine_similarity(all_items, concate_query)
return all_scores
def BPRLoss(pos_score, neg_scores):
return -torch.mean(torch.log(
torch.sigmoid(pos_score - neg_scores)), 0)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default='Clothing', type=str,
help="the chosen dataset.")
parser.add_argument("--lr",
type=float,
default=0.001,
help="leaning rate")
parser.add_argument("--clip_norm",
type=float,
default=5.0,
help="global clip norm")
parser.add_argument("--alpha",
type=float,
default=0.9,
help="long-term preference update rate")
parser.add_argument("--dropout",
type=float,
default=0.0,
help="drop out rate")
parser.add_argument("--weight_decay",
type=float,
default=0.0001,
help="weight decay rate")
parser.add_argument("--train_epoch",
type=int,
default=20,
help="train epoch number")
parser.add_argument("--num_steps",
type=int,
default=4,
help="num_steps in GRU and update rounds")
parser.add_argument("--global_dim",
type=int,
default=128,
help="the global dimension for items and queries")
parser.add_argument("--negative_numbers",
type=int,
default=5,
help="sample negtive numbers")
parser.add_argument("--model_dir",
type=str,
default="/model_tmp",
help="directory for model saving")
parser.add_argument("--top_k",
type=int,
default=20,
help="return the top k results")
parser.add_argument("--gpu",
type=str,
default="0",
help="gpu card ID")
FLAGS = parser.parse_args()
opt_gpu = FLAGS.gpu
os.environ["CUDA_VISIBLE_DEVICES"] = opt_gpu
############################### CREATE MODEL ###########################
model = ALSTP(config.embed_size, FLAGS.num_steps, FLAGS.global_dim,
FLAGS.alpha, FLAGS.dropout, is_training=True)
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr,
momentum=0.9, weight_decay=FLAGS.weight_decay)
scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=5, gamma=0.5)
############################### PREPARE DATA ############################
train_data = data_input.ALSTPData(FLAGS.num_steps, is_training=True)
valid_data = data_input.ALSTPData(None, is_training=False)
# for testing
full_data = data_input.ALSTPData(None, is_training=False)
all_items, all_item_vecs = [], []
for i in range(len(full_data.data)):
item = full_data.data['asin'][i]
if not item in all_items:
all_items.append(item)
all_item_vecs.append(full_data.data['item_vec'][i])
writer = SummaryWriter() # for visualizing loss
writer_count = 0
############################# START TRAINING #############################
for epoch in range(FLAGS.train_epoch):
train_data.neg_sample(FLAGS.negative_numbers)
model.train()
model.is_training = True
start_time = time.time()
(global_int_eval, item_pre_eval, query_vec_eval,
item_id_eval) = ([] for _ in range(4)) # for evaluation
user_list = train_data.shuffle_user() # first shuffle all users
for step, user in enumerate(user_list):
model.init_global_interest() # initializing global interest to zeros
item_len = train_data.next_user(user)
for itemidx in range(item_len):
(item_pre, item_target, neg_vecs, target_id, query_pre,
query_target) = train_data.next_item(itemidx)
item_pre = torch.tensor(item_pre).cuda()
query_pre = torch.tensor(query_pre).cuda()
item_target = torch.tensor(
item_target).cuda().view(1, config.embed_size)
query_target = torch.tensor(
query_target).cuda().view(1, config.embed_size)
negative_samples = torch.tensor(neg_vecs).cuda()
if itemidx == 1:
model.cons_global_interest()
# slowly update global interest
if not itemidx == 0 and itemidx % FLAGS.num_steps == 0:
model.update_global_interest()
model.zero_grad()
pos_score, neg_scores = model(item_pre, item_target,
query_pre, query_target,
negative_samples, None)
loss = BPRLoss(pos_score, neg_scores)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), FLAGS.clip_norm)
optimizer.step()
writer.add_scalar('data/loss', loss.data.item(), writer_count)
writer_count += 1
########################## SAVE FOR EVALUATION ##########################
item_pre, itemID, query_pre = train_data.next_item(item_len)
item_pre_eval.append(torch.tensor(item_pre))
query_vec_eval.append(torch.tensor(query_pre))
global_int_eval.append(model.global_interest)
item_id_eval.append(itemID)
evaluate.valid(model, valid_data, config.embed_size,
user_list, global_int_eval, item_pre_eval,
query_vec_eval, item_id_eval, all_items,
all_item_vecs, FLAGS.top_k)
elapsed_time = time.time() - start_time
scheduler.step(epoch)
print("Epoch: {:d} time is:\t".format(epoch)
+ time.strftime("%H: %M: %S", time.gmtime(elapsed_time)))
if __name__ == "__main__":
main()