forked from qqwweee/keras-yolo3
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathyolo_eval_all.py
533 lines (469 loc) · 24.8 KB
/
yolo_eval_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
Run a YOLO_v3 style detection model on test images.
"""
import colorsys
import os
from timeit import default_timer as timer
from tqdm import tqdm
import glob
import re
import math
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
import numpy as np
from keras import backend as K
from keras.models import load_model, Model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import (yolo_eval, yolo_body, tiny_yolo_body,
tiny_yolo_infusion_body, infusion_layer, yolo_infusion_body, tiny_yolo_infusion_hydra_body,
yolo_body_for_small_objs, tiny_yolo_small_objs_body)
from yolo3.utils import letterbox_image, get_random_data, get_classes, translate_classes, calc_annot_lines_md5
import os,datetime
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from keras.utils import multi_gpu_model
gpu_num=1
import argparse
import yaml
ap = argparse.ArgumentParser()
ap.add_argument("-g", "--config_path",
required=True,
default=None,
type=str,
help="The training configuration.")
# ap.add_argument("-w", "--weights",
# required=False,
# default=None,
# type=str,
# help="The weights to load the model. If not provided the trained_weights_final.h5 will be used from the logs dir.")
ap.add_argument("-e", "--only_epochs_above",
required=False,
default=None,
type=int,
help="Evaluate only epochs with its number above the specified integer. Otherwise, evaluate all weights")
ap.add_argument("-s", "--score_threshold",
required=False,
default=0.3,
type=float,
help="Minimum confidence for the predictions.")
ap.add_argument("-i", "--iou_threshold",
required=False,
default=0.45,
type=float,
help="IoU threshold for the NMS.")
ap.add_argument("-a", "--generate_all",
required=False,
action='store_true',
help="Request the script to generate all output formats.")
ap.add_argument("-c", "--continue_version",
required=False,
default=None,
type=str,
help="The evaluation will skip inferences that are already done. The new inferences will use the given version.")
ap.add_argument("-ca", "--canonical_bboxes", required=False, action="store_true", help="The training configuration.")
ARGS = ap.parse_args()
train_config = None
with open(ARGS.config_path, 'r') as stream:
train_config = yaml.load(stream)
print(train_config)
# if not train_config['log_dir'] in ARGS.weights:
# raise Exception('Wrong setup: log_dir <-> weights')
class YOLO(object):
def __init__(self, model_path=None):
self.model_name = train_config['model_name']
# self.model_path = 'model_data/yolo.h5' # model path or trained weights path
# self.model_path = 'logs/000_5epochs/trained_weights_final.h5'
self.model_path = model_path
print(self.model_path)
# self.anchors_path = 'model_data/yolo_anchors.txt'
self.classes_path = train_config['classes_path']
# self.classes_path = 'model_data/coco_classes.txt'
self.anchors_path = train_config['anchors_path']
self.score = ARGS.score_threshold
self.iou = ARGS.iou_threshold
self.class_names = self._get_class()
self.num_yolo_heads = 3 if self.model_name in ['yolo', 'yolo_infusion'] else 2
self.anchors = self._get_anchors()
self.sess = K.get_session()
# self.model_image_size = (416, 416) # fixed size or (None, None), hw
self.model_image_size = (train_config['input_height'],train_config['input_width']) # fixed size or (None, None), hw
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
if len(anchors) % 2 != 0:
raise Exception('The anchors should be in pairs.')
anchors = np.array(anchors).reshape(-1, 2)
if len(anchors) % self.num_yolo_heads != 0:
raise Exception('The number of anchors is incompatible to the number of heads. Should be multiple of {}'.format(self.num_yolo_heads))
return anchors
def generate(self):
if self.model_path:
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = True if self.model_name in ['tiny_yolo', 'tiny_yolo_infusion'] else False
if self.model_name == 'tiny_yolo_infusion':
print('Loading model weights', self.model_path)
#old style
# self.yolo_model = tiny_yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
## self.yolo_model.load_weights(self.model_path, by_name=True)
#new style
yolo_model, connection_layer = tiny_yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
seg_output = infusion_layer(connection_layer)
self.yolo_model = Model(inputs=yolo_model.input, outputs=[*yolo_model.output, seg_output])
# self.yolo_model.load_weights(self.model_path, by_name=True)
elif self.model_name == 'tiny_yolo_infusion_hydra':
#old style
self.yolo_model = tiny_yolo_infusion_hydra_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
# self.yolo_model.load_weights(self.model_path, by_name=True)
#new style
#not implemented yet
elif self.model_name == 'yolo_infusion':
print('Loading model weights', self.model_path)
yolo_model, seg_output = yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
self.yolo_model = Model(inputs=yolo_model.input, outputs=[*yolo_model.output, seg_output])
# self.yolo_model.load_weights(self.model_path, by_name=True)
else:
if self.model_name == 'yolo_small_objs':
self.yolo_model = yolo_body_for_small_objs(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
elif self.model_name == 'tiny_yolo_small_objs':
self.yolo_model = tiny_yolo_small_objs_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
else:
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//self.num_yolo_heads, num_classes)
# self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
if self.model_path:
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou, model_name=self.model_name)
return boxes, scores, classes
def detect_image(self, image, verbose=False, draw=False, output_file=None):
start = timer()
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
# print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
if verbose:
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
if draw:
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
detections = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
if draw:
label = '{} {:.2f}'.format(predicted_class, score)
imdraw = ImageDraw.Draw(image)
label_size = imdraw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
# if verbose:
# print(label, (left, top), (right, bottom))
if draw:
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
imdraw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
imdraw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
imdraw.text(text_origin, label, fill=(0, 0, 0), font=font)
del imdraw
# <left> <top> <right> <bottom> <class_id> <confidence>
detections.append([left, top, right, bottom, c, score])
end = timer()
execution_time = end - start
if verbose:
print('Executed in: ', execution_time)
return image, detections, execution_time
def close_session(self):
self.sess.close()
def get_ratio(bbox):
x_min, y_min, x_max, y_max = bbox
return (y_max - y_min)/(x_max - x_min)
def normal_round(number):
#3.5
integer_n = int(number) #3
float_n = number - integer_n #0.5
if float_n >= 0.5:
return integer_n + 1 #4
else:
return integer_n
def get_canonical_bboxes(original_bboxes, img_width, img_height, round_type='normal', side_ajustment='one'):
acceptable_ratios = [1,2,3]
canonical_bboxes = []
for bbox in original_bboxes:
x_min, y_min, x_max, y_max, class_id = bbox
new_x_min, new_y_min, new_x_max, new_y_max, _ = bbox
if side_ajustment=='one':
#step1: resize
original_ratio = get_ratio(bbox)
'''
if the original ratio is higher than maximum acceptable_ratios, we need to increase the width.
else we can increase the height.
'''
if original_ratio > max(acceptable_ratios):
#we need to increase the width so that the height reduces to maximum acceptable_ratios.
max_height_ratio = max(acceptable_ratios)
original_height = y_max - y_min
#the width should be increased to 1/max_height_ratio of the height.
new_width = original_height // max_height_ratio
#We need to expand it evenly in the sides.
original_width = x_max - x_min
width_diff = new_width - original_width #new_width is bigger.
new_x_min = x_min - width_diff//2
#We need to check if new_x_min still is in the image boundaries.
if new_x_min <= 0:
#not enough space
new_x_min = 0
#we will expand the remaining to the other direction.
new_x_max = new_x_min + new_width
#lets check the same for the new_x_max
if new_x_max >= img_width:
#not enough space
new_x_max = img_width
new_x_min = img_width - new_width
else:
#we can increase the height
if round_type == 'normal':
new_height_ratio = normal_round(original_ratio) #normal rounding (up or down).
elif round_type == 'up':
new_height_ratio = math.ceil(original_ratio) #rounding up
new_height = math.ceil(new_height_ratio*(x_max - x_min)) # the ratio is relative to the width.
#In how many pixels did the height grow?
original_height = y_max - y_min
height_diff = new_height - original_height
#We need to split the growth up and down.
#So, we put the ymin half the height_diff up.
half_diff = height_diff // 2
new_y_min = y_min - half_diff
#But we check how many pixels are left upwards. We cannot overflow the img borders.
if not (y_min - half_diff >= 0):
#not enough space.
new_y_min = 0
#Now we have found the good new position for y_min, we add the complete needed height.
new_y_max = new_y_min + new_height
#We also need to check if we kept outselves the bottom image boundaries.
if new_y_max >= img_height: #img_height does not include zero.
#We got out of space in the bottom. So lets move up the bbox to keep in the limits.
# remaining_height = img_height - new_y_max
# new_y_min -= remaining_height
# new_y_max -= remaining_height
new_y_max = img_height
new_y_min = img_height - new_height
#Lets check if we did it right, otherwise fallback to the original bbox.
if not (new_x_min >= 0 and new_y_min >= 0 and new_x_max < img_width and new_y_max < img_height):
# messed up, fallback!
# print('Could not convert the original bbox. We are going to use the original. Original: {}. Problematic: {}'.format(bbox, [new_x_min, new_y_min, new_x_max, new_y_max]))
canonical_bboxes.append(bbox)
else:
canonical_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max, class_id])
elif side_ajustment=='both':
pass
return canonical_bboxes
def detect_img(yolo,output_path,test_path):
result_detections = []
result_images = []
test_annotations = test_path
number_of_images = 0
with open(test_annotations,'r') as annot_f:
total_execution_time = 0
for annotation in tqdm(annot_f):
try:
# print(annotation)
# image = Image.open('/home/grvaliati/workspace/datasets/pti/PTI01/C_BLC03-02/0/18/01/08/16/57/18/00150-capture.jpg')
img_path = annotation.split(' ')[0].strip()
# print('img_path',img_path)
image = Image.open(img_path)
except Exception as e:
print('Error while opening file.', e)
break;
else:
r_image, detections, execution_time = yolo.detect_image(image)
total_execution_time += execution_time
number_of_images += 1
result_images.append(r_image.filename)
result_detections.append(detections)
# r_image.show()
# r_image.save('img_seg_test.jpg')
print("Prediciton time: Nr Images={}; Total={}; Seconds per image={};".format(number_of_images, total_execution_time, total_execution_time / number_of_images))
if ARGS.canonical_bboxes:
result_detections = get_canonical_bboxes(result_detections, img_width=image.width, img_height=image.height)
if ARGS.generate_all or train_config['dataset_name'] == 'pti01':
print('Saving results for ',train_config['dataset_name'])
pti01_output_path = output_path + '.txt'
print('Saving in ', pti01_output_path)
with open(pti01_output_path, 'w') as output_f:
for index, image_filename in enumerate(result_images):
detections_string = ''
for d in result_detections[index]:
# <left> <top> <right> <bottom> <class_id> <confidence>
detections_string += ' {},{},{},{},{},{}'.format(d[0], d[1], d[2], d[3], d[4], d[5])
output_f.write('{}{}\n'.format(image_filename, detections_string))
if ARGS.generate_all or train_config['dataset_name'] == 'caltech':
print('Saving results for ',train_config['dataset_name'])
print('Saving in ', output_path)
for index, image_filename in enumerate(result_images):
#image_filename /absolute/path/set00_V000_662.jpg
image_name = os.path.basename(image_filename) #set00_V000_662.jpg
path_elements = image_name.replace('.jpg','').split('_')
annot_dir = os.path.join(path_elements[0],path_elements[1])
annot_dir = os.path.join(output_path,annot_dir)
os.makedirs(annot_dir, exist_ok=True)
#annot file format -> "I00029.txt"
annot_name = 'I{}.txt'.format(path_elements[2].zfill(5))
annot_filename = os.path.join(annot_dir, annot_name)
with open(annot_filename, 'w') as output_f:
for d in result_detections[index]:
#caltech evaluation format -> "[left, top, width, height, score]".
left, top, right, botton, class_id, score = d[0], d[1], d[2], d[3], d[4], d[5]
width = right - left
height = botton - top
output_f.write('{},{},{},{},{}\n'.format(left,top,width,height,score))
# yolo.close_session()
def translated_gt_if_needed():
if 'class_translation_path' in train_config and train_config['class_translation_path']:
print('Translating dataset classes...')
with open(train_config['class_translation_path'], 'r') as stream:
class_translation_config = yaml.load(stream)
with open(train_config['test_path']) as f:
lines = f.readlines()
class_names = get_classes(train_config['classes_path'])
lines = translate_classes(lines,class_names,class_translation_config)
print('Translation is done. Now we want to save the new translated dataset version.')
annotation_path_translated = train_config['test_path'].replace('.txt', '_'+train_config['class_translation_path'].replace('.yml', '.txt'))
if os.path.exists(annotation_path_translated):
print('Seems like this translation has already been done before.')
already_present_translation_on_disk_lines = open(annotation_path_translated, 'r').readlines()
disk_md5 = calc_annot_lines_md5(already_present_translation_on_disk_lines)
disk_md52 = calc_annot_lines_md5(already_present_translation_on_disk_lines)
current_translated_md5 = calc_annot_lines_md5(lines)
print('Checking translation version...')
if disk_md5 == current_translated_md5:
print('Disk translation version matches the current generated one. Lets procced to training.')
else:
print('Disk translation version is different from the current one. Seems like the translation code has changed.')
print('Do backup the disk annotation translated file and properly document it, and move to some other folder: ', annotation_path_translated)
raise Exception('Disk and current class translations missmatch versions. Cannot proceed.')
else:
with open(annotation_path_translated, 'w') as output_f:
print('Writting the new translated annotation file to', annotation_path_translated)
for annot_line in lines:
output_f.write(annot_line + '\n')
return annotation_path_translated
else:
#no translation needed
return train_config['test_path']
if __name__ == '__main__':
test_annot_path = translated_gt_if_needed()
weights_paths = glob.glob(os.path.join(train_config['log_dir'],'*.h5'))
weights_paths.sort()
output_version = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
yolo = YOLO()
#get epoch number by regex
#we could just split the string but lets avoid some future trouble.
epoch_regex = re.compile('ep[0-9]{3}')
for weight in weights_paths:
#evaluate only epochs with number higher than the specified.
if ARGS.only_epochs_above:
m = epoch_regex.search(weight)
if m:
epoch_number = int(m.group().replace('ep',''))
if epoch_number < ARGS.only_epochs_above:
print('Skipping weight:', weight)
#skip the current epoch weight.
continue
else:
'''
if we dont recognize the epoch numbering pattern, we will
evaluate the given weight just to be sure.
The final_weight will match this.
'''
pass
if 'trained_weights_stage_1.h5' in weight:
#We normally do not want to infer this model. This is the final weight for the freezing stage.
continue
#infer_logdir_epochs_dataset_outputversion
output_path = 'infer_{}_{}_{}_{}_{}_{}_iou-{}_score-{}'.format(
train_config['log_dir'].replace('/',''),
os.path.basename(weight).split('-')[0], #[ep022]-loss5.235-val_loss5.453.h5
train_config['dataset_name'],
train_config['model_name'],
train_config['short_comment'] if train_config['short_comment'] else '',
ARGS.continue_version if ARGS.continue_version else output_version,
ARGS.iou_threshold,
ARGS.score_threshold
)
if ((train_config['dataset_name'] == 'pti01' and os.path.exists(output_path + '.txt')) or
(train_config['dataset_name'] == 'caltech' and os.path.exists(output_path))):
print('Skipping weights:', weight)
continue
else:
print('Loading weights:', weight)
yolo.yolo_model.load_weights(weight, by_name=True)
detect_img(yolo,output_path=output_path, test_path=test_annot_path)
yolo.close_session()