-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathusing_milvus_as_vectorDB.py
94 lines (81 loc) · 2.97 KB
/
using_milvus_as_vectorDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import asyncio
import numpy as np
from nano_graphrag import GraphRAG, QueryParam
from nano_graphrag._utils import logger
from nano_graphrag.base import BaseVectorStorage
from dataclasses import dataclass
@dataclass
class MilvusLiteStorge(BaseVectorStorage):
@staticmethod
def create_collection_if_not_exist(client, collection_name: str, **kwargs):
if client.has_collection(collection_name):
return
# TODO add constants for ID max length to 32
client.create_collection(
collection_name, max_length=32, id_type="string", **kwargs
)
def __post_init__(self):
from pymilvus import MilvusClient
self._client_file_name = os.path.join(
self.global_config["working_dir"], "milvus_lite.db"
)
self._client = MilvusClient(self._client_file_name)
self._max_batch_size = self.global_config["embedding_batch_num"]
MilvusLiteStorge.create_collection_if_not_exist(
self._client,
self.namespace,
dimension=self.embedding_func.embedding_dim,
)
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
list_data = [
{
"id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["vector"] = embeddings[i]
results = self._client.upsert(collection_name=self.namespace, data=list_data)
return results
async def query(self, query, top_k=5):
embedding = await self.embedding_func([query])
results = self._client.search(
collection_name=self.namespace,
data=embedding,
limit=top_k,
output_fields=list(self.meta_fields),
search_params={"metric_type": "COSINE", "params": {"radius": 0.2}},
)
return [
{**dp["entity"], "id": dp["id"], "distance": dp["distance"]}
for dp in results[0]
]
def insert():
data = ["YOUR TEXT DATA HERE", "YOUR TEXT DATA HERE"]
rag = GraphRAG(
working_dir="./nano_graphrag_cache_milvus_TEST",
enable_llm_cache=True,
vector_db_storage_cls=MilvusLiteStorge,
)
rag.insert(data)
def query():
rag = GraphRAG(
working_dir="./nano_graphrag_cache_milvus_TEST",
enable_llm_cache=True,
vector_db_storage_cls=MilvusLiteStorge,
)
print(rag.query("YOUR QUERY HERE", param=QueryParam(mode="local")))
insert()
query()