-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
371 lines (317 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import torch
import torch.optim as optim
import os
import socket
import sys
import numpy as np
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from sacred import Experiment
from sacred.observers import FileStorageObserver
import CONSTS
from all_models import load_model
from all_losses import load_loss
from datasets import load_dataset
from engine import sample_dataset, run_epoch
from utils.interpretation_utils import convert_onehot, plot_maps, compute_auc_multiclass, compute_iou_interpretation, better_hparams, plot_misclassifications_grid
ex = Experiment('SemanticSupport')
logs_dir = 'storage'
#logs_dir = 'tmp'
ex.observers.append(FileStorageObserver.create(logs_dir))
def remove_progress(captured_out):
lines = (line for line in captured_out.splitlines() if 'it/s]' not in line)
return '\n'.join(lines)
ex.captured_out_filter = remove_progress
@ex.config
def config():
model = 'UNetMirc' # 'choose between: 'ResNet', 'UNetMirc', 'RecUNetMirc', 'RecUNetMirc', 'RecUNetMircTD', 'RecUNetMircMulti'
loss = 'WeightedCrossEnt' # 'Loss function for training the model'. Could be also array of [interp_loss, class_loss]
dataset = 'HorseHead' # 'The name of train/test sets'
neg_set = 1 # Set of negative examples in train: (0) Small (usually saved for val), Medium (1), Large (2)
batch_size = 64 # 'Specify the number of batches'
num_workers = 32 # 'Specify the number of cpu cores'
epochs = 100 # 'Specify the number of epochs to train'
optimizer = 'ADAM' # 'Optimizer (default: ADAM)'
learningrate = 1e-4 # 'learning rate (default: 0.001)'
loss_ratio = [1.0, 1.0] # [interp, class]
subset = 10000 # the subset size of negative examples added to each epoch. 'None' means adding all negative examples
evaluation_interval = 1 # interval evaluations on validation set
overfit = False
plotflag = False
data_aug = False
seed = 1234
@ex.named_config
def overfit():
neg_set = 0
subset = None
overfit = True
batch_size = 1
num_workers = 1
epochs = 5000
evaluation_interval = 10
# -- DATASETS: --
@ex.named_config
def mis():
dataset = 'ManInSuit'
@ex.named_config
def eye():
dataset = 'HumanEye'
# -- MODELS: --
@ex.named_config
def vanilla():
model = 'ResNet18'
loss = 'WeightedCrossEnt'
loss_ratio = [0.0, 1.0]
batch_size = 200
subset = 1000
epochs = 100
@ex.named_config
def resnet50():
model = 'ResNet50'
@ex.named_config
def interp():
model = 'UNetMirc'
loss = 'CrossEntArray' #'CrossEnt'
loss_ratio = [1.0, 0.0]
batch_size = 64
neg_set = 0 # not used and therefore take the smallest test to cut costs
subset = 0
epochs = 1000
evaluation_interval = 10
@ex.named_config
def deeplab():
model = 'DeepLabMirc'
@ex.named_config
def fcn():
model = 'FCNMirc'
@ex.named_config
def dual():
model = 'RecUNetMirc'
loss = ['CrossEntArray', 'WeightedCrossEntReduced'] #'WeightedCrossEnt'] #['CrossEntArray', 'CrossEnt'] # [interp, class]
loss_ratio = [1.0, 1.0] #[interp, class]
batch_size = 64
subset = 1000
epochs = 100
@ex.named_config
def dualtd():
model = 'RecUNetMircTD'
loss = ['CrossEntArray', 'WeightedCrossEntReduced'] # [interp, class]
loss_ratio = [1.0, 1.0] # [interp, class]
batch_size = 64
subset = 1000
epochs = 100
@ex.named_config
def dualmulti():
model = 'RecUNetMircMulti'
loss = ['CrossEntArray', 'WeightedCrossEntReduced'] # [interp, class]
loss_ratio = [1.0, 1.0] # [interp, class]
batch_size = 16
subset = 1000
epochs = 100
# -- OPTIONS: --
@ex.named_config
def long():
epochs = 1000
evaluation_interval = 10
@ex.named_config
def verylong():
epochs = 5000
evaluation_interval = 10
@ex.named_config
def veryverylong():
epochs = 10000
evaluation_interval = 100
# boost interp
@ex.named_config
def boost():
loss_ratio = [10.0, 1.0] # [interp, class]
# boost interp more
@ex.named_config
def superboost():
loss_ratio = [100.0, 1.0] # [interp, class]
# ~10K set of negative examples
@ex.named_config
def small():
neg_set = 0
# ~100K set of negative examples
@ex.named_config
def medium():
neg_set = 1
# ~10M set of negative examples
@ex.named_config
def large():
neg_set = 2
# reduce the classification stream in a dual model
@ex.named_config
def noclass():
subset = 0
neg_set = 0 # not used and therefore take the smallest test to cut costs
loss_ratio = [1.0, 0.0] # [interp, class]
epochs = 1000
evaluation_interval = 10
# reduce the interpretation stream in a dual model
@ex.named_config
def nointerp():
loss_ratio = [0.0, 1.0] # [interp, class]
# On each batch put a set of negative examples in equal size set of positive
@ex.named_config
def equal():
subset = 130
epochs = 1000
evaluation_interval = 10
# Use Dice loss (TODO Dice -- still not working well)
@ex.named_config
def dice():
loss = 'Dice' #['Dice', 'WeightedCrossEnt']
@ex.named_config
def dicedual():
loss = ['Dice', 'WeightedCrossEnt']
# Use data augmentation for positive examples
@ex.named_config
def aug():
data_aug = True
# low-power parameters suitable to a cpu machine
@ex.named_config
def mac():
num_workers = 4
batch_size = 4
epochs = 10
########################################
########################################
# Utils
########################################
########################################
def save_model(filename, epoch, model, args, current_train_loss, current_val_loss, best_val_metric, num_parts, hostname):
torch.save({
'model_state_dict': model.state_dict(),
'args': args,
'epoch': epoch,
'best_val_metric': best_val_metric,
'current_train_loss': current_train_loss,
'current_val_loss': current_val_loss,
'hostname': hostname,
'ds_num_parts': num_parts,
'saved_to': filename
}, filename)
print("model saved to {}".format(filename))
########################################
########################################
# Main
########################################
########################################
@ex.automain
def main(_run):
print(_run.config)
torch.manual_seed(_run.config['seed'])
np.random.seed(_run.config['seed'])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
if device.type != 'cpu':
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
hostname = socket.getfqdn()
# LOAD train data:
ds = load_dataset(_run.config['dataset'], _run.config['neg_set'], data_aug=_run.config['data_aug'])
trainloader, valloader, testloader = sample_dataset(ds.trainset, ds.testset, ds.testvalset2,
_run.config['overfit'], _run.config['subset'], _run.config['batch_size'], _run.config['num_workers'], verbose=True)
# LOAD model:
model = load_model(_run.config['model'], _run.config['loss_ratio'], num_internal_parts=ds.num_parts)
if device.type != 'cpu':
model.to(device)
print('training model %s..' % model.__class__.__name__)
basename = _run.config['dataset'] + '_' + _run.config['model']
# loss
class_weights = [1/f for f in ds.trainset.class_ratio]
class_weights = None #torch.Tensor(class_weights).to(device)
criterion = load_loss(_run.config['loss'], num_parts=ds.num_parts, class_weights=class_weights, device=device)
if isinstance(_run.config['loss'], tuple):
loss_ratio = _run.config['loss_ratio']
print("Loss ratio is [{}}, {}}]" % (loss_ratio[0], loss_ratio[1]))
# Optimizer:
if _run.config['optimizer'] == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=_run.config['learningrate'], momentum=0.99)
elif _run.config['optimizer'] == 'ADAM':
optimizer = optim.Adam(model.parameters(), lr=_run.config['learningrate'], betas=(0.9, 0.999), weight_decay=1e-5)
else:
sys.exit('ERROR: optimizer name does not exist..')
# logs:
log_folder = os.path.join(logs_dir, 'logs', _run.config['dataset'], _run.config['model'], '{}'.format(_run.config['loss_ratio']), _run._id)
writer = SummaryWriter(log_dir=log_folder)
metric_dict = {'AUC/Best_Validation': 0, 'IOU/Best_Validation': 1, 'AUC/Test': 2} # 'Loss/Validation': 3,
run_dict = {k: v.__repr__() if isinstance(v, list) else v for k, v in _run.config.items() if v is not None}
sei = better_hparams(writer, hparam_dict=run_dict, metric_dict=metric_dict)
if _run.config['plotflag']:
fig = plt.figure(figsize=(16, 10))
print("Training in batches of size %d.." % _run.config['batch_size'])
print('Training on machine name %s..' % hostname)
print("log dir is: {}".format(log_folder))
print("Using %s optimizer, lr=%f.." % (_run.config['optimizer'], _run.config['learningrate']))
# Train & Evaluate:
best_val_metric_class = 0.0
best_val_metric_interp = 0.0
with tqdm(total=_run.config['epochs']) as pbar_main:
for epoch in range(1, _run.config['epochs']+1):
pbar_main.update()
if _run.config['subset'] is not None: # update samples from train set
trainloader, _, _ = sample_dataset(ds.trainset, ds.testset, ds.testvalset2,
_run.config['overfit'], _run.config['subset'], _run.config['batch_size'], _run.config['num_workers'])
train_loss, train_interp_loss, train_class_loss, train_acc, train_auc, train_iou, train_misc = \
run_epoch(epoch, dataset=trainloader, optimizer=optimizer, model=model, criterion=criterion, device=device, prefix='Training')
if epoch == 1 or epoch % _run.config['evaluation_interval'] == 0:
val_loss, val_interp_loss, val_class_loss, val_acc, val_auc, val_iou, val_misc = \
run_epoch(epoch, dataset=valloader, optimizer=None, model=model, criterion=criterion, device=device, prefix='Validating')
writer.add_scalar('Loss/Train', train_loss, epoch)
writer.add_scalar('Loss/Train/interp', train_interp_loss, epoch)
writer.add_scalar('Loss/Train/class', train_class_loss, epoch)
writer.add_scalar('Loss/Validation', val_loss, epoch)
writer.add_scalar('Loss/Val_interp', val_interp_loss, epoch)
writer.add_scalar('Loss/Val_class', val_class_loss, epoch)
writer.add_scalar('Accuracy/Train', train_acc, epoch)
writer.add_scalar('Accuracy/Validation', val_acc, epoch)
writer.add_scalar('AUC/Train', train_auc, epoch)
writer.add_scalar('AUC/Validation', val_auc, epoch)
writer.add_scalar('IOU/Train_all', np.mean(train_iou), epoch)
writer.add_scalar('IOU/Val_all', np.mean(val_iou), epoch)
for cls_indx in range(len(train_iou)):
writer.add_scalar('IOU/Train_part%d' % (cls_indx+1), train_iou[cls_indx], epoch)
writer.add_scalar('IOU/Val_part%d' % (cls_indx+1), val_iou[cls_indx], epoch)
# Plot results:
# =================
if _run.config['plotflag'] and model.output_type != 'img2class':
train_imgs, train_interps, train_labels, train_interp_out, train_class_out, train_filenames = \
train_misc[0], train_misc[1], train_misc[2], train_misc[3], train_misc[4], train_misc[5]
val_imgs, val_interps, val_labels, val_interp_out, val_class_out, val_filenames = val_misc[0], val_misc[
1], val_misc[2], val_misc[3], val_misc[4], val_misc[5]
fig.clf()
plot_maps(fig, train_imgs[0], train_interps[0], train_labels[0], train_class_out[0], train_interp_out[0])
writer.add_figure(tag='Images/Train', figure=fig, global_step=epoch, close=False, walltime=None)
fig.clf()
plot_maps(fig, val_imgs[0], val_interps[0], val_labels[0], val_class_out[0], val_interp_out[0])
writer.add_figure(tag='Images/Val', figure=fig, global_step=epoch, close=False, walltime=None)
# Update best:
# =================
if val_auc > best_val_metric_class:
filename = os.path.join(log_folder, 'weights_{}_best_class.pth'.format(basename))
best_val_metric_class = val_auc
save_model(filename, epoch, model, _run.config, train_loss, val_loss, best_val_metric_class, ds.num_parts, hostname)
writer.add_scalar('AUC/Best_Validation', best_val_metric_class, epoch)
test_loss, test_interp_loss, test_class_loss, test_acc, test_auc, test_iou, test_misc = \
run_epoch(epoch, dataset=testloader, optimizer=None, model=model, criterion=criterion, device=device, prefix='Testing')
writer.add_scalar('AUC/Test', test_auc, epoch)
if np.mean(val_iou) > best_val_metric_interp:
filename = os.path.join(log_folder, 'weights_{}_best_interp.pth'.format(basename))
best_val_metric_interp = np.mean(val_iou)
save_model(filename, epoch, model, _run.config, train_loss, val_loss, best_val_metric_class, ds.num_parts, hostname)
writer.add_scalar('IOU/Best_Validation', best_val_metric_interp, epoch)
# test_loss, test_interp_loss, test_class_loss, test_acc, test_auc, test_iou, test_misc = \
# run_epoch(epoch, dataset=testloader, optimizer=optimizer, model=model, criterion=criterion, device=device)
# writer.add_scalar('IOU/Test', test_iou, epoch)
print('Finished Training')
# ===============
# Save & Close:
# ===============
filename = os.path.join(log_folder, 'weights_{}_ep_{}.pth'.format(basename, epoch))
save_model(filename, epoch, model, _run.config, train_loss, val_loss, best_val_metric_class, ds.num_parts, hostname)
writer.file_writer.add_summary(sei)
writer.close() # close tensorboard