-
Notifications
You must be signed in to change notification settings - Fork 0
/
DDPG_Agent.py
244 lines (191 loc) · 9.22 KB
/
DDPG_Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
import random
from collections import namedtuple, deque
from DDPG_P import Policy
from DDPG_Q import QNetwork
import torch
import torch.nn.functional as F
import torch.optim as optim
import random
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 128 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR = 1e-4 # learning rate
UPDATE_EVERY = 1 # how often to update the network
UPDATE_EVERY2 = 1
LR2 = 1e-4
num_of_batch_step = 1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckActionNoise:
def __init__(self, action_dim, mu = 0, theta = 0.15, sigma = 0.2):
self.action_dim = action_dim
self.mu = mu
self.theta = theta
self.sigma = sigma
self.X = np.ones(self.action_dim) * self.mu
def reset(self):
self.X = np.ones(self.action_dim) * self.mu
def sample(self):
dx = self.theta * (self.mu - self.X)
dx = dx + self.sigma * np.random.randn(len(self.X))
self.X = self.X + dx
return self.X
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, n_agents, seed, action_lim=1, activation=None):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.n_agents = n_agents
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
self.embedding_size = 16
self.action_lim = action_lim
self.activation = activation
# Q-Network
self.policy_local = Policy(state_size, action_size).to(device)
self.policy_target = Policy(state_size, action_size).to(device)
self.qnetwork_local = QNetwork(state_size, action_size).to(device)
self.qnetwork_target = QNetwork(state_size, action_size).to(device)
self.policy_optimizer = optim.Adam(self.policy_local.parameters(), lr=LR2)
self.qnetwork_optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR2)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
self.t_step2 = 0
self.expected = torch.from_numpy(np.asarray([[0]]))
self.target = torch.from_numpy(np.asarray([[0]]))
self.local = torch.from_numpy(np.asarray([[0]]))
self.noise = OrnsteinUhlenbeckActionNoise(self.action_size)
def _activation(self, x, activation=None, numpy=True):
if numpy:
if activation is None:
t = x
if activation == 'tanh':
t = np.tanh(x)
if activation == 'sigmoid':
t = 1/(1+np.exp(-x))
if not numpy:
if activation is None:
t = x
if activation == 'tanh':
t = torch.tanh(x)
if activation == 'sigmoid':
t = torch.sigmoid(x)
return t * self.action_lim
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
#self.memory.add(state, action, reward, next_state, done)
for i in range(self.n_agents):
self.memory.add(state[i,:], action[i,:], reward[i], next_state[i,:], done[i])
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
for b in range(num_of_batch_step):
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.policy_local.eval()
with torch.no_grad():
action_policy, _ = self.policy_local(state)
self.policy_local.train()
self.qnetwork_local.train()
action_policy = action_policy.data.cpu().numpy().astype(float).reshape(-1,)
if eps < np.random.random():
# + action_policy*self.noise.sample()
return self._activation(action_policy, activation=self.activation, numpy=True)
else:
return self._activation(np.random.normal(size=self.n_agents*self.action_size), activation=self.activation, numpy=True)
def learn(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
self.qnetwork_target.eval()
self.policy_target.eval()
#########################################################
########## Q-Network Optimization #######################
#########################################################
Expected_actions, _ = self.policy_target(next_states)
Expected_actions = self._activation(Expected_actions, activation=self.activation, numpy=False)
Q_targets_next, _ = self.qnetwork_target(next_states, Expected_actions)
Q_targets_next = Q_targets_next.detach()
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
Q_expected_mu, _ = self.qnetwork_local(states, actions)
loss = F.smooth_l1_loss(Q_expected_mu, Q_targets)
self.qnetwork_optimizer.zero_grad()
loss.backward()
self.qnetwork_optimizer.step()
#########################################################
########## End of Q-Network Optimization ################
#########################################################
#########################################################
########## Policy-Network Optimization - Expected Q ####
#########################################################
policy, _ = self.policy_local(states)
policy = self._activation(policy, activation=self.activation, numpy=False)
Q_local_mu, _ = self.qnetwork_local(states, policy)
P_expexted_loss = -1*torch.mean(Q_local_mu)
self.policy_optimizer.zero_grad()
P_expexted_loss.backward()
self.policy_optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)
self.soft_update(self.policy_local, self.policy_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)