- 使用torchvision.models.detection.fasterrcnn_resnet50_fpn实现目标检测
- 模型参数:pretrained=True(预训练),weights=COCO_V1(使用COCO作为预训练权重)
- opencv读取摄像头每一帧,送入模型得到结果
coco标签:
coco_labels_name = ["unlabeled", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat","traffic light", "fire hydrant", "street sign", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse","sheep", "cow", "elephant", "bear", "zebra", "giraffe", "hat", "backpack", "umbrella", "shoe", "eye glasses", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports_ball", "kite", "baseball bat","baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "plate", "wine glass", "cup", "fork", "knife","spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot_dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "mirror", "dining table", "window", "desk", "toilet", "door", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "blender", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "hair brush"]