-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
59 lines (42 loc) · 1.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
from sklearn.model_selection import train_test_split
import ktrain
from ktrain import text
import argparse
import os
import tensorflow as tf
from tensorflow import keras
import keras
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--csv', help='train model csv file')
parser.add_argument('--label', help='train label of dataset')
parser.add_argument('--data', help='train dataset')
parser.add_argument('--epoch', help='traing Epoch')
args = parser.parse_args()
logdir="./logs/"
def read_dataset(dataset, data, label):
df = pd.read_csv(dataset)
label_list = list(set(df["Category"]))
df.sample(frac=1)
x_train, x_test, y_train, y_test = train_test_split(
list(df[data]), list(df[label]), test_size=0.33, random_state=42)
return x_train, x_test, y_train, y_test, label_list
def train_model(x_train, x_test, y_train, y_test, label_list, epoch, checkpoint_path):
MODEL_NAME = 'albert-base-v2'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=label_list)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
tbCallBack = keras.callbacks.TensorBoard(log_dir=logdir, write_graph=True, write_images=True)
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(3e-5, int(epoch),checkpoint_folder = checkpoint_path, callbacks=[tbCallBack])
return learner, model
def predictor(learner, test):
predictor = ktrain.get_predictor(learner.model, preproc=t)
print(predictor.predict(test))
if __name__ == "__main__":
x_train, x_test, y_train, y_test, label_list = read_dataset(args.csv, args.data, args.label)
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
learner, model = train_model(x_train, x_test, y_train, y_test, label_list, int(args.epoch), checkpoint_path)
model.summary()