forked from ennauata/housegan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compatibility_figure.py
180 lines (154 loc) · 6.38 KB
/
compatibility_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import os
import numpy as np
import math
import sys
import random
import torchvision.transforms as transforms
from torchvision.utils import save_image
from floorplan_dataset_maps import FloorplanGraphDataset, floorplan_collate_fn
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch
from PIL import Image, ImageDraw
from reconstruct import reconstructFloorplan
import svgwrite
from utils import bb_to_img, bb_to_vec, bb_to_seg, mask_to_bb, remove_junctions, ID_COLOR, bb_to_im_fid
from models import Generator
from collections import defaultdict
import matplotlib.pyplot as plt
import networkx as nx
parser = argparse.ArgumentParser()
parser.add_argument("--n_cpu", type=int, default=16, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=128, help="dimensionality of the latent space")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--num_variations", type=int, default=10, help="number of variations")
parser.add_argument("--exp_folder", type=str, default='exp', help="destination folder")
opt = parser.parse_args()
print(opt)
numb_iters = 200000
exp_name = 'exp_with_graph_global_new'
target_set = 'D'
phase='eval'
checkpoint = './checkpoints/{}_{}_{}.pth'.format(exp_name, target_set, numb_iters)
def make_sequence(given_nds, given_eds, noise):
n_nodes = given_nds.shape[0]
seq = []
for k in range(n_nodes):
curr_nds = given_nds[:k+1]
curr_noise = noise[:k+1]
curr_eds = []
for i in range(k+1):
for j in range(k+1):
if j > i:
for e in given_eds:
if (e[0] == i and e[2] == j) or (e[2] == i and e[0] == j):
curr_eds.append([i, e[1], j])
curr_eds = torch.tensor(curr_eds)
seq.append([curr_nds, curr_noise, curr_eds])
return seq
def pad_im(cr_im, final_size=299, bkg_color='white'):
new_size = int(np.max([np.max(list(cr_im.size)), final_size]))
padded_im = Image.new('RGB', (new_size, new_size), 'white')
padded_im.paste(cr_im, ((new_size-cr_im.size[0])//2, (new_size-cr_im.size[1])//2))
padded_im = padded_im.resize((final_size, final_size), Image.ANTIALIAS)
return padded_im
def draw_graph(g_true):
# build true graph
G_true = nx.Graph()
colors_H = []
for k, label in enumerate(g_true[0]):
_type = label+1
if _type >= 0:
G_true.add_nodes_from([(k, {'label':_type})])
colors_H.append(ID_COLOR[_type])
for k, m, l in g_true[1]:
if m > 0:
G_true.add_edges_from([(k, l)], color='b',weight=4)
plt.figure()
pos = nx.nx_agraph.graphviz_layout(G_true, prog='dot')
edges = G_true.edges()
colors = ['black' for u,v in edges]
weights = [4 for u,v in edges]
nx.draw(G_true, pos, node_size=1000, node_color=colors_H, font_size=0, font_weight='bold', edges=edges, edge_color=colors, width=weights)
plt.tight_layout()
plt.savefig('./dump/_true_graph.jpg', format="jpg")
rgb_im = Image.open('./dump/_true_graph.jpg')
rgb_arr = pad_im(rgb_im)
return rgb_arr
def draw_floorplan(dwg, junctions, juncs_on, lines_on):
# draw edges
for k, l in lines_on:
x1, y1 = np.array(junctions[k])
x2, y2 = np.array(junctions[l])
#fill='rgb({},{},{})'.format(*(np.random.rand(3)*255).astype('int'))
dwg.add(dwg.line((float(x1), float(y1)), (float(x2), float(y2)), stroke='black', stroke_width=4, opacity=1.0))
# draw corners
for j in juncs_on:
x, y = np.array(junctions[j])
dwg.add(dwg.circle(center=(float(x), float(y)), r=3, stroke='red', fill='white', stroke_width=2, opacity=1.0))
return
# Create folder
os.makedirs(opt.exp_folder, exist_ok=True)
# Initialize generator and discriminator
generator = Generator()
generator.load_state_dict(torch.load(checkpoint))
# Initialize variables
cuda = True if torch.cuda.is_available() else False
if cuda:
generator.cuda()
rooms_path = '/local-scratch4/nnauata/autodesk/FloorplanDataset/'
# Initialize dataset iterator
fp_dataset_test = FloorplanGraphDataset(rooms_path, transforms.Normalize(mean=[0.5], std=[0.5]), target_set=target_set, split=phase)
fp_loader = torch.utils.data.DataLoader(fp_dataset_test,
batch_size=opt.batch_size,
shuffle=False, collate_fn=floorplan_collate_fn)
# Optimizers
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# ------------
# Vectorize
# ------------
globalIndex = 0
final_images = []
target_graph = [47]
for i, batch in enumerate(fp_loader):
if i not in target_graph:
continue
# Unpack batch
mks, nds, eds, nd_to_sample, ed_to_sample = batch
# Configure input
real_mks = Variable(mks.type(Tensor))
given_nds = Variable(nds.type(Tensor))
given_eds = eds
noise = Variable(Tensor(np.random.normal(0, 1, (real_mks.shape[0], opt.latent_dim))))
samples = make_sequence(given_nds, given_eds, noise)
for k, el in enumerate(samples):
print('var num {}'.format(k))
given_nds, z, given_eds = el
# plot images
with torch.no_grad():
gen_mks = generator(z, given_nds, given_eds)
gen_bbs = np.array([np.array(mask_to_bb(mk)) for mk in gen_mks.detach().cpu()])
real_nodes = np.where(given_nds.detach().cpu()==1)[-1]
print(real_nodes)
gen_bbs = gen_bbs[np.newaxis, :, :]/32.0
graph = [real_nodes, None]
graph_arr = draw_graph([real_nodes, given_eds.detach().cpu().numpy()])
final_images.append(graph_arr)
# reconstruct
fake_im = bb_to_im_fid(gen_bbs, real_nodes)
final_images.append(fake_im)
row = 0
for k, im in enumerate(final_images):
path = './figure_seq/var_{}/'.format(row)
os.makedirs(path, exist_ok=True)
im.save('{}/{}.jpg'.format(path, k))
if (k+1) % 20 == 0:
row+=1
# final_images = torch.stack(final_images).transpose(1, 3)
# save_image(final_images, "./output/rendered_{}.png".format(target_set), nrow=opt.num_variations+1)