-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLnFold_BaggedC45_MES.m
148 lines (130 loc) · 5.43 KB
/
LnFold_BaggedC45_MES.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
function stats = LnFold_BaggedC45_MES(data_set,data_labels,shuffle,n,nIter,Subsets)
% use Multi-expert system idea to reduce the effect of the imbalanced data set problem
% Nov. 13 2015 by Cheng LU
% Using n-fold subset selection and C4.5 decision tree classifier
% Input:
% data_set: data
% data_labels: labels
% shuffle: 1 for random, 0 for non-random partition (Default: 1)
% n: Number of folds to your cross-validation (Default: 3)
% nIter: Number of cross-validation iterations (Default: 1)
% Subsets: pass your own training and testing subsets & labels (Default:
% computer will generate using 'nFold')
%
% Output:
% stats: struct containing TP, FP, TN, FN, etc.
% data_set = eigVec_graphfeats;
% data_labels = labels(:);
% classifier = 'SVM';
% shuffle = 1;
% n = 3;
if nargin < 6
Subsets = {};
end
if nargin < 5
nIter = 1;
end
if nargin < 4
n = 3; % 3-fold cross-validation
end
if nargin < 3
shuffle = 1; % randomized
end
% if any(~xor(data_labels == 1, data_labels == -1)), error('Labels must be 1 and -1'); end
stats = struct; %cell(1,nIter);
for j=1:nIter
fprintf('Iteration: %i\n',j);
% reset total statistics
Ttp = 0; Ttn = 0; Tfp = 0; Tfn = 0; decision=zeros(size(data_labels)); prediction=zeros(size(data_labels));
if isempty(Subsets)
[tra tes]=GenerateSubsets('nFold',data_set,data_labels,shuffle,n);
else
tra = Subsets{j}.training;
tes = Subsets{j}.testing;
end
for i=1:n
fprintf(['Fold # ' num2str(i) '\n']);
training_set = data_set(tra{i},:);
testing_set = data_set(tes{i},:);
training_labels = data_labels(tra{i});
testing_labels = data_labels(tes{i});
%% !!!!!!!!!!! introduce MES here
idxPositive = find( training_labels > 0 );
idxNegative = find( training_labels <= 0 );
% assume the negative is the majority class
numME=floor(length(idxNegative)/length(idxPositive));
% train numME classifiers
for iME=1:numME
curtraining_labels=[training_labels(idxPositive);training_labels(idxNegative((iME-1)*length(idxPositive)+1:(iME)*length(idxPositive)))];
curtraining_set=[training_set(idxPositive,:);training_set(idxNegative((iME-1)*length(idxPositive)+1:(iME)*length(idxPositive)),:)];
[temp_statsME(iME),methodstring] = Classify( 'BaggedC45', curtraining_set , testing_set, curtraining_labels(:), testing_labels(:));
end
statsME.prediction=mean([temp_statsME.prediction],2);
statsME.decision=mean([temp_statsME.prediction],2)>0.5;
if numel(unique(testing_labels)) > 1
[FPR,TPR,T,AUC,OPTROCPT,~,~] = perfcurve(testing_labels,statsME.prediction,1); % calculate AUC. 'perfcurve' can also calculate sens, spec etc. to plot the ROC curve.
optim_idx = FPR == OPTROCPT(1) & TPR == OPTROCPT(2);
statsME.auc = AUC;
statsME.fpr = FPR;
statsME.tpr = TPR;
statsME.threshold = T(optim_idx);
else
statsME.auc = [];
statsME.fpr = [];
statsME.tpr = [];
statsME.threshold = [];
end
trues = statsME.decision(:)' == testing_labels(:)'; % true results are those where decision matches labels
positives = statsME.decision(:)' == 1; % positive results are those where decision is "1", i.e. the target class
statsME.tp = nnz(trues & positives);
statsME.tn = nnz(trues & ~positives);
statsME.fp = nnz(~trues & positives);
statsME.fn = nnz(~trues & ~positives);
statsME.acc = (statsME.tp + statsME.tn) / (statsME.tp + statsME.fp + statsME.fn + statsME.tn);
statsME.ppv = statsME.tp / (statsME.tp + statsME.fp);
statsME.sens = statsME.tp / (statsME.tp + statsME.fn);
statsME.spec = statsME.tn / (statsME.tn + statsME.fp);
statsME.bacc = (statsME.sens + statsME.spec)/2;
statsME.f1 = 2*statsME.ppv*statsME.sens/(statsME.ppv + statsME.sens);
% average the soft prediction values for the MES
prediction(tes{i})=statsME.prediction;
decision(tes{i}) = statsME.decision;
Ttp = Ttp + statsME.tp;
Ttn = Ttn + statsME.tn;
Tfp = Tfp + statsME.fp;
Tfn = Tfn + statsME.fn;
clear temp_statsME
clear statsME
end
decision(decision==0) = -1;
% output statistics
if numel(unique(data_labels))>1 %numel(unique(testing_labels))>1
if n == 1
[FPR,TPR,T,AUC,OPTROCPT,~,~] = perfcurve(data_labels(tes{i}),prediction(tes{i}),1);
else
[FPR,TPR,T,AUC,OPTROCPT,~,~] = perfcurve(data_labels,prediction,1);
end
stats(j).AUC = AUC;
stats(j).TPR = TPR;
stats(j).FPR = FPR;
else
stats(j).AUC = [];
stats(j).TPR = [];
stats(j).FPR = [];
end
stats(j).tp = Ttp;
stats(j).tn = Ttn;
stats(j).fp = Tfp;
stats(j).fn = Tfn;
stats(j).acc = (Ttp+Ttn)/(Ttp+Ttn+Tfp+Tfn);
stats(j).ppv = Ttp/(Ttp+Tfp);
stats(j).sens = Ttp/(Ttp+Tfn);
stats(j).spec = Ttn/(Tfp+Ttn);
stats(j).subsets.training = tra;
stats(j).subsets.testing = tes;
stats(j).labels = data_labels;
stats(j).decision = decision;
stats(j).prediction = prediction;
Pre = ((Ttp+Tfp)*(Ttp+Tfn) + (Ttn+Tfn)*(Ttn+Tfp)) / (Ttp+Ttn+Tfp+Tfn)^2;
stats(j).kappa = (stats(j).acc - Pre) / (1 - Pre);
end