-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkNN.m
35 lines (29 loc) · 813 Bytes
/
kNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function [methodstring,tp,tn,fp,fn,prediction] = kNN( training_set , testing_set, training_labels, testing_labels, k )
methodstring = 'kNN';
if nargin < 5 || isempty(k)
k = 1;
end
%W = L2_distance(training_set',testing_set');
%minW = min(W);
%prediction = zeros(size(testing_labels));
%for i=1:size(W,2)
% temp = training_labels(find(W(:,i)==minW(i)));
% prediction(i) = temp(1);
%end
prediction = knnclassify(testing_set, training_set, training_labels,k);
tp = 0; tn = 0; fp = 0; fn = 0;
for i=1:length(testing_labels)
if testing_labels(i) == 1
if prediction(i) == testing_labels(i)
tp = tp+1;
else
fp = fp+1;
end
else
if prediction(i) == testing_labels(i)
tn = tn+1;
else
fn = fn+1;
end
end
end