-
Notifications
You must be signed in to change notification settings - Fork 345
/
Copy pathdistillation_analysis.py
117 lines (88 loc) · 4.24 KB
/
distillation_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""Analyzes, visualizes knowledge distillation"""
import argparse
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import utils
import model.net as net
import model.resnet as resnet
import model.data_loader as data_loader
from torchnet.meter import ConfusionMeter
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='experiments/base_model', help="Directory of params.json")
parser.add_argument('--restore_file', default='best', help="name of the file in --model_dir \
containing weights to load")
parser.add_argument('--dataset', default='dev', help="dataset to analze the model on")
parser.add_argument('--temperature', type=float, default=1.0, \
help="temperature used for softmax output")
def model_analysis(model, dataloader, params, temperature=1., num_classes=10):
"""
Generate Confusion Matrix on evaluation set
"""
model.eval()
confusion_matrix = ConfusionMeter(num_classes)
softmax_scores = []
predict_correct = []
with tqdm(total=len(dataloader)) as t:
for idx, (data_batch, labels_batch) in enumerate(dataloader):
if params.cuda:
data_batch, labels_batch = data_batch.cuda(async=True), \
labels_batch.cuda(async=True)
data_batch, labels_batch = Variable(data_batch), Variable(labels_batch)
output_batch = model(data_batch)
confusion_matrix.add(output_batch.data, labels_batch.data)
softmax_scores_batch = F.softmax(output_batch/temperature, dim=1)
softmax_scores_batch = softmax_scores_batch.data.cpu().numpy()
softmax_scores.append(softmax_scores_batch)
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
predict_correct_batch = (np.argmax(output_batch, axis=1) == labels_batch).astype(int)
predict_correct.append(np.reshape(predict_correct_batch, (labels_batch.size, 1)))
t.update()
softmax_scores = np.vstack(softmax_scores)
predict_correct = np.vstack(predict_correct)
return softmax_scores, predict_correct, confusion_matrix.value().astype(int)
if __name__ == '__main__':
"""
Evaluate the model on the test set.
"""
# Load the parameters
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available() # use GPU is available
# Set the random seed for reproducible experiments
torch.manual_seed(230)
if params.cuda: torch.cuda.manual_seed(230)
# Get the logger
utils.set_logger(os.path.join(args.model_dir, 'analysis.log'))
# Create the input data pipeline
logging.info("Loading the dataset...")
# fetch dataloaders
# train_dl = data_loader.fetch_dataloader('train', params)
# dev_dl = data_loader.fetch_dataloader('dev', params)
dataloader = data_loader.fetch_dataloader(args.dataset, params)
logging.info("- done.")
# Define the model graph
model = resnet.ResNet18().cuda() if params.cuda else resnet.ResNet18()
# fetch loss function and metrics
metrics = resnet.metrics
logging.info("Starting analysis...")
# Reload weights from the saved file
utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)
# Evaluate and analyze
softmax_scores, predict_correct, confusion_matrix = model_analysis(model, dataloader, params,
args.temperature)
results = {'softmax_scores': softmax_scores, 'predict_correct': predict_correct,
'confusion_matrix': confusion_matrix}
for k, v in results.items():
filename = args.dataset + '_temp' + str(args.temperature) + '_' + k + '.txt'
save_path = os.path.join(args.model_dir, filename)
np.savetxt(save_path, v)