forked from white127/QA-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen.py
131 lines (121 loc) · 4.67 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import config, os, random
#####################################################################
# function: load vocab
# return: dict[word] = [word_id]
#####################################################################
def load_vocab():
voc = {}
for line in open(config.vocab_file):
word, _id = line.strip().split('\t')
voc[word] = _id
return voc
#####################################################################
# function: load answers, restore idx to real word
# return : [answer_1, answer_2, ..., answer_n]
#####################################################################
def ins_load_answers():
_list, voc = ['<None>'], load_vocab()
for line in open(config.answers_file):
_, sent = line.strip().split('\t')
_list.append('_'.join([voc[wid] for wid in sent.split(' ')]))
return _list
#####################################################################
# function: preprea word2vec binary file
# return :
#####################################################################
def ins_w2v():
print('preparing word2vec ......')
_data, voc = [], load_vocab()
for line in open(config.question_train_file):
items = line.strip().split('\t')
_data.append(' '.join([voc[_id] for _id in items[0].split(' ')]))
for _file in [config.answers_file, config.question_dev_file, \
config.question_test1_file, config.question_test2_file]:
for line in open(_file):
items = line.strip().split('\t')
_data.append(' '.join([voc[_id] for _id in items[1].split(' ')]))
of = open(config.w2v_train_file, 'w')
for s in _data: of.write(s + '\n')
of.close()
os.system('time ' + config.w2c_command + ' -train ' + config.w2v_train_file + ' -output ' + config.w2v_bin_file + ' -cbow 0 -size 100 -window 5 -negative 20 -sample 1e-3 -threads 12 -binary 0 -min-count 1')
#####################################################################
# function: preprea train file
# file format: flag question answer
#####################################################################
def ins_train():
print('preparing train ......')
answers, voc, _data = ins_load_answers(), load_vocab(), []
for line in open(config.question_train_file):
qsent, ids = line.strip().split('\t')
qsent = '_'.join([voc[wid] for wid in qsent.split(' ')])
for _id in ids.split(' '):
_data.append(' '.join(['1', qsent, answers[int(_id)]]))
of = open(config.train_file, 'w')
for _s in _data: of.write(_s + '\n')
of.close()
#####################################################################
# function: preprea test file
# file format: flag group_id question answer
#####################################################################
def ins_test():
print('preparing test ......')
answers, voc = ins_load_answers(), load_vocab()
for _in, _out in ([(config.question_test2_file, config.test2_file), \
(config.question_test1_file, config.test1_file)]):
_data, group = [], int(0)
for line in open(_in):
pids, qsent, pnids = line.strip().split('\t')
positive = {_id:'#' for _id in pids.split(' ')}
qsent = '_'.join([voc[wid] for wid in qsent.split(' ')])
for _id in pnids.split(' '):
flag = '1' if _id in positive else '0'
_data.append(' '.join([flag, str(group), qsent, answers[int(_id)]]))
group += 1
of = open(_out, 'w')
for s in _data: of.write(s + '\n')
of.close()
def ins_qa():
ins_w2v()
ins_train()
ins_test()
def qur_prepare():
#pretrain word2vec
_list = []
for line in open(config.qr_file):
items = line.strip().split('\t')
if len(items) != 6:
continue
_list.append(items)
_list = _list[1:]
random.shuffle(_list)
_list = [(f, q1, q2) for _,_,_,q1,q2,f in _list]
of = open(config.w2v_train_file, 'w')
for f, q1, q2 in _list:
of.write(q1 + '\n')
of.write(q2 + '\n')
of.close()
os.system('time ' + config.w2v_command + ' -train ' + config.w2v_train_file + ' -output ' + config.w2v_bin_file + ' -cbow 0 -size 100 -window 5 -negative 20 -sample 1e-3 -threads 12 -binary 0 -min-count 1')
#train file
_newlist = []
for f, q1, q2 in _list:
if len(q1) <= 1 or len(q2) <= 1: continue
q1 = '_'.join(q1.split(' '))
q2 = '_'.join(q2.split(' '))
_newlist.append((f, q1, q2))
_list = _newlist
of = open(config.train_file, 'w')
for f, q1, q2 in _list[:int(len(_list) * 0.8)]:
of.write(' '.join([f, q1, q2]) + '\n')
of.close()
#test file
of = open(config.test1_file, 'w')
for f, q1, q2 in _list[int(len(_list) * 0.8):]:
of.write(' '.join([f, q1, q2]) + '\n')
of.close()
def qur_qa():
qur_prepare()
if __name__ == '__main__':
if config.dataset == config.dataset_ins:
ins_qa()
elif config.dataset == config.dataset_qur:
qur_qa()