forked from xamyzhao/brainstorm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
357 lines (306 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import argparse
import json
import os
import sys
import numpy as np
# external project dependencies
sys.path.append(os.path.join(os.path.dirname(__file__), 'ext', 'neuron'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'ext', 'pytools-lib'))
from src import experiment_engine, transform_models, segmenter_model
# the labels used in the voxelmorph paper (https://github.com/voxelmorph/voxelmorph)
voxelmorph_labels = [0,
16, # brain stem
10, 49, # thalamus (second entry)
8, 47, # cerebellum cortex
4, 43, # ventricles
7, 46, # cerebellum wm
12, 51, # putamen
2, 41, # cerebral wm
28, 60, # ventral dc,
11, 50, # caudate,
13, 52, # pallidum,
17, 53, # hippocampus
14, 15, # 3rd 4th vent
18, 54, # amygdala
24, # csf
3, 42, # cerebral cortex
31, 63, # choroid plexus
]
named_data_params = {
'mri-supervised': { # supervised experiment
'use_labels': voxelmorph_labels,
'use_atlas_as_source': False,
'use_subjects_as_source': [],
'do_load_test': False,
'img_shape': (160, 192, 224, 1),
'n_shot': 100, # in addition to source subjects above
'n_unlabeled': 0,
'n_validation': 50,
'do_preload_vols': True,
'aug_in_gen': True,
'n_tm_aug': None,
'n_flow_aug': None,
'warp_labels': True,
},
'mri-100unlabeled': {
'use_labels': voxelmorph_labels,
'use_atlas_as_source': False,
'use_subjects_as_source': ['atlas'], #['OASIS_OAS1_0327_MR1_mri_talairach_orig'] was used in the paper
'do_load_test': False,
'img_shape': (160, 192, 224, 1),
'n_shot': 0,
'n_unlabeled': 100,
'n_validation': 50,
'do_preload_vols': True,
'aug_in_gen': True,
'n_tm_aug': None,
'n_flow_aug': None,
'warp_labels': True,
},
'mri-100unlabeled-test': {
'use_labels': voxelmorph_labels,
'do_load_test': True,
'n_shot': 0,
'n_unlabeled': 1,
'n_validation': 1,
'n_test': 200,
'test_seed': 17,
'use_atlas_as_source': False,
'use_subjects_as_source': ['atlas'],
'img_shape': (160, 192, 224, 1),
'do_preload_vols': True,
'aug_in_gen': True,
'n_vte_aug': None,
'n_flow_aug': None,
'warp_labels': True,
},
}
if __name__ == '__main__':
np.random.seed(17)
ap = argparse.ArgumentParser()
# common params
ap.add_argument('exp_type', nargs='*', type=str, help='trans (transform model), fss (few-shot segmentation)')
ap.add_argument('-g', '--gpu', nargs='*', type=int, help='gpu id(s) to use', default=1)
ap.add_argument('-b', '--batch_size', nargs='?', type=int, default=16)
ap.add_argument('-d', '--data', nargs='?', type=str, help='name of dataset', default=None)
ap.add_argument('-m', '--model', type=str, help='model architecture', default=None)
ap.add_argument('--epoch', nargs='?', help='epoch number or "latest"', default=None)
ap.add_argument('--lr', nargs='?', type=float, help='Learning rate', default=1e-4)
ap.add_argument('--debug', action='store_true', help='Flag for debug mode (saves more often, only runs for 10 epochs)',
default=False)
ap.add_argument('--loadn', type=int, help='Number of volumes to load (instead of full dataset)', default=None)
ap.add_argument('--print_every', nargs='?', type=int,
help='Number of seconds between printing training batches as images. Useful when debugging', default=120)
ap.add_argument('--from_dir', nargs='?', default=None, help='Load experiment from dir instead of by params')
ap.add_argument('--flow_from_dir', nargs='?', default=None, help='Load flow params from dir')
ap.add_argument('--color_from_dir', nargs='?', default=None, help='Load color params from dir')
ap.add_argument('--init_from', nargs='*', default=None,
help='List of model files to try and initialize weights from. Will attempt to match model names')
ap.add_argument('--init_weights', action='store_true', default=False,
help='Load as many models as we can, and give up on any we cannot find')
# one-shot segmentation params
ap.add_argument('--aug_sas', action='store_true', default=False,
help='do aug with the flow model in arch_params')
ap.add_argument('--aug_rand', action='store_true', default=False,
help='do aug with random flow fields and rand multiplicative intensity')
ap.add_argument('--aug_tm', action='store_true', default=False,
help='do aug with the transform models in arch_params')
ap.add_argument('--coupled', action='store_true', default=False,
help='coupled sampling of targets for transform models and fss')
# augmentation params
ap.add_argument('--aug.flow_amp', nargs='?', type=int, default=None,
dest='aug_rand_flow_amp',
help='Uniform amplitude of random flow field to start with')
ap.add_argument('--aug.flow_sigma', nargs='?', type=int, default=None,
help='Amount to blur random flow field', dest='aug_rand_blur_sigma')
ap.add_argument('--aug.n_aug', nargs='?', type=int, default=None,
help='Number of new augmented examples to add', dest='data_n_aug')
args = ap.parse_args()
experiment_engine.configure_gpus(args.gpu)
if not args.debug:
end_epoch = 20000
save_every_n_epochs = 50
test_every_n_epochs = 50
else:
save_every_n_epochs = 4
test_every_n_epochs = 2
end_epoch = 10
if args.from_dir:
with open(os.path.join(args.from_dir, 'arch_params.json'), 'r') as f:
fromdir_arch_params = json.load(f)
with open(os.path.join(args.from_dir, 'data_params.json'), 'r') as f:
fromdir_data_params = json.load(f)
for ei, exp_type in enumerate(args.exp_type):
if exp_type.lower() == 'trans':
'''''''''''''''''''''''''''
Transform (spatial or appearance) trainer.
The bidirectional spatial transform model should be trained first,
since the backwards spatial transform is necessary for learning a
color transform model in the atlas' reference frame.
'''''''''''''''''''''''''''
test_every_n_epochs = 10
save_every_n_epochs = 10
named_arch_params = {
'flow-fwd': {
'model_arch': 'flow_fwd',
'save_every': 10,
'test_every': 25,
'transform_reg_flow': 'grad_l2', 'transform_reg_lambda_flow': 1,
'recon_loss_Iw': 'cc_vm',
'cc_loss_weight': 1, 'cc_win_size_Iw': 9,
'end_epoch': 500,
},
'flow-bck': {
'model_arch': 'flow_bck',
'save_every': 10,
'test_every': 25,
'transform_reg_flow': 'grad_l2', 'transform_reg_lambda_flow': 1,
'recon_loss_Iw': 'cc_vm',
'cc_loss_weight': 1, 'cc_win_size_Iw': 9,
'end_epoch': 500,
},
'flow-bidir': {
'model_arch': 'flow_bidir_separate',
'save_every' : 10,
'test_every': 25,
'transform_reg_flow': 'grad_l2', 'transform_reg_lambda_flow': 1,
'recon_loss_Iw': 'cc_vm',
'cc_loss_weight': 1, 'cc_win_size_Iw': 9,
'end_epoch': 500,
},
'color-unet': {
'model_arch': 'color_unet',
'save_every': 5,
'test_every': 5,
'flow_fwd_model': 'trained_models/spatial_transform_model.h5',
'flow_bck_model': 'trained_models/spatial_transform_model_bck.h5',
'transform_reg_color': 'grad-seg-l2', 'transform_reg_lambda_color': 1,
'color_transform_in_tgt_space': False,
'do_include_aux_input': False,
'recon_loss_I': 'l2-tgt', # compute reconstruction loss (L2) in target space
'recon_loss_wt': 50,
'end_epoch': 20,
'use_aux_reg': 'contours',
},
}
# since this is MRI data, we can only ever train on one pair at a time
args.batch_size = 1
if args.model:
arch_params = named_arch_params[args.model]
elif args.from_dir:
with open(os.path.join(args.from_dir, 'arch_params.json'), 'r') as f:
arch_params = json.load(f)
with open(os.path.join(args.from_dir, 'data_params.json'), 'r') as f:
data_params = json.load(f)
else:
raise IOError('Must specify a transform model to train!')
# load flow and color architecture params independently
if args.flow_from_dir:
with open(os.path.join(args.flow_from_dir, 'arch_params.json'), 'r') as f:
arch_params['flow_arch_params'] = json.load(f)
if args.color_from_dir:
with open(os.path.join(args.color_from_dir, 'arch_params.json'), 'r') as f:
arch_params['color_arch_params'] = json.load(f)
# override default dataset
if args.data:
data_params = named_data_params[args.data]
arch_params['lr'] = args.lr
if 'save_every' in arch_params.keys():
save_every_n_epochs = arch_params['save_every']
if 'test_every' in arch_params.keys():
test_every_n_epochs = arch_params['test_every']
exp = transform_models.TransformModelTrainer(data_params, arch_params)
end_epoch = arch_params['end_epoch']
tm_end_epoch = end_epoch
elif exp_type.lower() == 'seg':
'''''''''''''''''''''''''''
One-shot segmentation (with optional augmentation)
'''''''''''''''''''''''''''
named_arch_params = {
'default': {
'nf_enc': [32, 32, 64, 64, 128, 128],
'n_convs_per_stage': 2,
'n_seg_dims': 2, # segment slices (2D)
'n_aug_dims': 3, # augment each volume (3D)
'end_epoch': 100000,
'pretrain_l2': 500,
'warpoh': False,
'tm_flow_model': ( # transform model (spatial) for augmentation
'trained_models/'
'spatial_transform_model.h5'
),
'tm_flow_bck_model': ( # transform model (spatial) for augmentation
'trained_models/'
'spatial_transform_model_bck.h5'
),
'tm_color_model': ( # transform model (appearance) for augmentation
'trained_models/'
'appearance_transform_model.h5'
),
},
}
if args.from_dir:
with open(os.path.join(args.from_dir, 'arch_params.json'), 'r') as f:
arch_params = json.load(f)
with open(os.path.join(args.from_dir, 'data_params.json'), 'r') as f:
data_params = json.load(f)
else:
arch_params = named_arch_params['default']
if args.model:
arch_params = named_arch_params[args.model]
if args.data:
data_params = named_data_params[args.data]
arch_params['lr'] = args.lr
rand_aug_params = {
'randflow_type': None,
'flow_sigma': None,
'flow_amp': 200,
'blur_sigma': 12,
'mult_amp': 0.5,
}
if args.from_dir:
with open(os.path.join(args.from_dir, 'arch_params.json'), 'r') as f:
arch_params = json.load(f)
with open(os.path.join(args.from_dir, 'data_params.json'), 'r') as f:
data_params = json.load(f)
data_params['aug_tm'] = False
data_params['aug_rand'] = False
data_params['aug_sas'] = False
data_params['aug_randmult'] = False
if args.aug_rand:
data_params['do_preload_vols'] = False
data_params['aug_params'] = rand_aug_params
data_params['aug_rand'] = args.aug_rand
if args.aug_rand_flow_amp is not None:
data_params['aug_params']['flow_amp'] = args.aug_rand_flow_amp
if args.aug_rand_blur_sigma is not None:
data_params['aug_params']['blur_sigma'] = args.aug_rand_blur_sigma
if args.aug_tm:
data_params['aug_tm'] = True
data_params['do_preload_vols'] = False
elif args.aug_sas:
data_params['do_preload_vols'] = False
data_params['aug_sas'] = True
data_params['n_sas_aug'] = data_params['n_unlabeled']
data_params['aug_in_gen'] = False
if args.data_n_aug:
data_params['n_sas_aug'] = args.data_n_aug
if args.aug_tm or args.aug_sas or args.aug_rand:
test_every_n_epochs = 200
else:
# test no-aug less often because it will be pretty bad and will plateau quickly
test_every_n_epochs = 500
save_every_n_epochs = 50
if args.coupled:
arch_params['do_coupled_sampling'] = True
else:
arch_params['do_coupled_sampling'] = False
exp = segmenter_model.SegmenterTrainer(data_params, arch_params, debug=args.debug)
end_epoch = arch_params['end_epoch']
tm_end_epoch = end_epoch
prev_exp_dir = experiment_engine.run_experiment(
exp=exp, run_args=args,
end_epoch=end_epoch,
save_every_n_epochs=save_every_n_epochs,
test_every_n_epochs=test_every_n_epochs)
print('Done with experiment {}, models saved to {}'.format(exp_type, prev_exp_dir))