-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathtrain.py
243 lines (197 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
from torch.utils.data import DataLoader
import argparse
import numpy as np
import os
import nets
import dataloader
from dataloader import transforms
from utils import utils
import model
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='test', type=str,
help='Validation mode on small subset or test mode on full test data')
# Training data
parser.add_argument('--data_dir', default='data/SceneFlow', type=str, help='Training dataset')
parser.add_argument('--dataset_name', default='SceneFlow', type=str, help='Dataset name')
parser.add_argument('--batch_size', default=64, type=int, help='Batch size for training')
parser.add_argument('--val_batch_size', default=64, type=int, help='Batch size for validation')
parser.add_argument('--num_workers', default=8, type=int, help='Number of workers for data loading')
parser.add_argument('--img_height', default=288, type=int, help='Image height for training')
parser.add_argument('--img_width', default=512, type=int, help='Image width for training')
# For KITTI, using 384x1248 for validation
parser.add_argument('--val_img_height', default=576, type=int, help='Image height for validation')
parser.add_argument('--val_img_width', default=960, type=int, help='Image width for validation')
# Model
parser.add_argument('--seed', default=326, type=int, help='Random seed for reproducibility')
parser.add_argument('--checkpoint_dir', default=None, type=str, required=True,
help='Directory to save model checkpoints and logs')
parser.add_argument('--learning_rate', default=1e-3, type=float, help='Learning rate')
parser.add_argument('--weight_decay', default=1e-4, type=float, help='Weight decay for optimizer')
parser.add_argument('--max_disp', default=192, type=int, help='Max disparity')
parser.add_argument('--max_epoch', default=64, type=int, help='Maximum epoch number for training')
parser.add_argument('--resume', action='store_true', help='Resume training from latest checkpoint')
# AANet
parser.add_argument('--feature_type', default='aanet', type=str, help='Type of feature extractor')
parser.add_argument('--no_feature_mdconv', action='store_true', help='Whether to use mdconv for feature extraction')
parser.add_argument('--feature_pyramid', action='store_true', help='Use pyramid feature')
parser.add_argument('--feature_pyramid_network', action='store_true', help='Use FPN')
parser.add_argument('--feature_similarity', default='correlation', type=str,
help='Similarity measure for matching cost')
parser.add_argument('--num_downsample', default=2, type=int, help='Number of downsample layer for feature extraction')
parser.add_argument('--aggregation_type', default='adaptive', type=str, help='Type of cost aggregation')
parser.add_argument('--num_scales', default=3, type=int, help='Number of stages when using parallel aggregation')
parser.add_argument('--num_fusions', default=6, type=int, help='Number of multi-scale fusions when using parallel'
'aggragetion')
parser.add_argument('--num_stage_blocks', default=1, type=int, help='Number of deform blocks for ISA')
parser.add_argument('--num_deform_blocks', default=3, type=int, help='Number of DeformBlocks for aggregation')
parser.add_argument('--no_intermediate_supervision', action='store_true',
help='Whether to add intermediate supervision')
parser.add_argument('--deformable_groups', default=2, type=int, help='Number of deformable groups')
parser.add_argument('--mdconv_dilation', default=2, type=int, help='Dilation rate for deformable conv')
parser.add_argument('--refinement_type', default='stereodrnet', help='Type of refinement module')
parser.add_argument('--pretrained_aanet', default=None, type=str, help='Pretrained network')
parser.add_argument('--freeze_bn', action='store_true', help='Switch BN to eval mode to fix running statistics')
# Learning rate
parser.add_argument('--lr_decay_gamma', default=0.5, type=float, help='Decay gamma')
parser.add_argument('--lr_scheduler_type', default='MultiStepLR', help='Type of learning rate scheduler')
parser.add_argument('--milestones', default=None, type=str, help='Milestones for MultiStepLR')
# Loss
parser.add_argument('--highest_loss_only', action='store_true', help='Only use loss on highest scale for finetuning')
parser.add_argument('--load_pseudo_gt', action='store_true', help='Load pseudo gt for supervision')
# Log
parser.add_argument('--print_freq', default=100, type=int, help='Print frequency to screen (iterations)')
parser.add_argument('--summary_freq', default=100, type=int, help='Summary frequency to tensorboard (iterations)')
parser.add_argument('--no_build_summary', action='store_true', help='Dont save sammary when training to save space')
parser.add_argument('--save_ckpt_freq', default=10, type=int, help='Save checkpoint frequency (epochs)')
parser.add_argument('--evaluate_only', action='store_true', help='Evaluate pretrained models')
parser.add_argument('--no_validate', action='store_true', help='No validation')
parser.add_argument('--strict', action='store_true', help='Strict mode when loading checkpoints')
parser.add_argument('--val_metric', default='epe', help='Validation metric to select best model')
args = parser.parse_args()
logger = utils.get_logger()
utils.check_path(args.checkpoint_dir)
utils.save_args(args)
filename = 'command_test.txt' if args.mode == 'test' else 'command_train.txt'
utils.save_command(args.checkpoint_dir, filename)
def main():
# For reproducibility
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Train loader
train_transform_list = [transforms.RandomCrop(args.img_height, args.img_width),
transforms.RandomColor(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
]
train_transform = transforms.Compose(train_transform_list)
train_data = dataloader.StereoDataset(data_dir=args.data_dir,
dataset_name=args.dataset_name,
mode='train' if args.mode != 'train_all' else 'train_all',
load_pseudo_gt=args.load_pseudo_gt,
transform=train_transform)
logger.info('=> {} training samples found in the training set'.format(len(train_data)))
train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, drop_last=True)
# Validation loader
val_transform_list = [transforms.RandomCrop(args.val_img_height, args.val_img_width, validate=True),
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
]
val_transform = transforms.Compose(val_transform_list)
val_data = dataloader.StereoDataset(data_dir=args.data_dir,
dataset_name=args.dataset_name,
mode=args.mode,
transform=val_transform)
val_loader = DataLoader(dataset=val_data, batch_size=args.val_batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True, drop_last=False)
# Network
aanet = nets.AANet(args.max_disp,
num_downsample=args.num_downsample,
feature_type=args.feature_type,
no_feature_mdconv=args.no_feature_mdconv,
feature_pyramid=args.feature_pyramid,
feature_pyramid_network=args.feature_pyramid_network,
feature_similarity=args.feature_similarity,
aggregation_type=args.aggregation_type,
num_scales=args.num_scales,
num_fusions=args.num_fusions,
num_stage_blocks=args.num_stage_blocks,
num_deform_blocks=args.num_deform_blocks,
no_intermediate_supervision=args.no_intermediate_supervision,
refinement_type=args.refinement_type,
mdconv_dilation=args.mdconv_dilation,
deformable_groups=args.deformable_groups).to(device)
logger.info('%s' % aanet)
if args.pretrained_aanet is not None:
logger.info('=> Loading pretrained AANet: %s' % args.pretrained_aanet)
# Enable training from a partially pretrained model
utils.load_pretrained_net(aanet, args.pretrained_aanet, no_strict=(not args.strict))
if torch.cuda.device_count() > 1:
logger.info('=> Use %d GPUs' % torch.cuda.device_count())
aanet = torch.nn.DataParallel(aanet)
# Save parameters
num_params = utils.count_parameters(aanet)
logger.info('=> Number of trainable parameters: %d' % num_params)
save_name = '%d_parameters' % num_params
open(os.path.join(args.checkpoint_dir, save_name), 'a').close()
# Optimizer
# Learning rate for offset learning is set 0.1 times those of existing layers
specific_params = list(filter(utils.filter_specific_params,
aanet.named_parameters()))
base_params = list(filter(utils.filter_base_params,
aanet.named_parameters()))
specific_params = [kv[1] for kv in specific_params] # kv is a tuple (key, value)
base_params = [kv[1] for kv in base_params]
specific_lr = args.learning_rate * 0.1
params_group = [
{'params': base_params, 'lr': args.learning_rate},
{'params': specific_params, 'lr': specific_lr},
]
optimizer = torch.optim.Adam(params_group, weight_decay=args.weight_decay)
# Resume training
if args.resume:
# AANet
start_epoch, start_iter, best_epe, best_epoch = utils.resume_latest_ckpt(
args.checkpoint_dir, aanet, 'aanet')
# Optimizer
utils.resume_latest_ckpt(args.checkpoint_dir, optimizer, 'optimizer')
else:
start_epoch = 0
start_iter = 0
best_epe = None
best_epoch = None
# LR scheduler
if args.lr_scheduler_type is not None:
last_epoch = start_epoch if args.resume else start_epoch - 1
if args.lr_scheduler_type == 'MultiStepLR':
milestones = [int(step) for step in args.milestones.split(',')]
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=milestones,
gamma=args.lr_decay_gamma,
last_epoch=last_epoch)
else:
raise NotImplementedError
train_model = model.Model(args, logger, optimizer, aanet, device, start_iter, start_epoch,
best_epe=best_epe, best_epoch=best_epoch)
logger.info('=> Start training...')
if args.evaluate_only:
assert args.val_batch_size == 1
train_model.validate(val_loader)
else:
for _ in range(start_epoch, args.max_epoch):
if not args.evaluate_only:
train_model.train(train_loader)
if not args.no_validate:
train_model.validate(val_loader)
if args.lr_scheduler_type is not None:
lr_scheduler.step()
logger.info('=> End training\n\n')
if __name__ == '__main__':
main()