-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_final.py
136 lines (102 loc) · 4.71 KB
/
model_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.linear_model import SGDClassifier
from sklearn.multioutput import MultiOutputRegressor, RegressorChain
from xgboost import XGBClassifier, XGBRegressor
from preprocessing import preprocess_data as preprocess
from sklearn.metrics import mean_squared_error
from math import sqrt
import pandas as pd
import pickle
import preprocessing
import utils
from typing import List
class Model3:
'''
This class is used to code our final approach for the submission where
we fuse data sources together with predictions from previous task.
'''
def __init__(self):
pass
def get_face_data(self, target):
df_face, _ = utils.load_data_from_csv(dtype="face")
df_face, y = utils.extract_data(df_face, target, type="face")
# df_face = preprocess(df_face, dtype="face")
return df_face, y
def get_text_data(self, target):
df_text, _ = utils.load_data_from_csv(dtype="text")
df_text, y = utils.extract_data(df_text, target, type="text")
# df_text = preprocess(df_text, dtype="text")
return df_text, y
def get_relation_data(self):
df_relation, df_output = utils.load_data_from_csv(dtype="relation")
# Getting sparse matrix based on page likes
df_relation_matrix = utils.get_transformed_relation(df_relation, min_likes=5)
df_relation_matrix = pd.merge(df_relation_matrix, df_output,
left_on="userid",
right_on="userid",
how="outer")
# Filling mean values for users with no page likes (among the pages selected)
df_relation_matrix.fillna(df_relation_matrix.mean(), inplace=True)
return df_relation_matrix
def get_node2vec_data(self):
'''
Need to work on it. Get page embeddings #Harman
'''
df_relation, df_output = utils.load_data_from_csv(dtype="relation")
df_n2v = ""
return df_n2v
def combined_features(self, target):
X_face, y = self.get_face_data(target)
X_text, _ = self.get_text_data(target)
X_n2v = self.get_node2vec_data()
print("Face Shape", X_face.shape)
print("Text Shape", X_text.shape)
X_combined = pd.concat([X_face, X_text], axis=1)
print("Combined Shape", X_combined.shape)
return X_combined, y
def build_model_and_evaluate(target, prev_pred=None):
model = Model3()
X_combined, y= model.combined_features(target)
# combining the prediction of previous tasks to predict another task
if prev_pred is not None:
X_combined = pd.concat([X_combined, prev_pred])
# X, y = utils.extract_data(X_combined, label=target)
X_train, X_test, y_train, y_test = train_test_split(X_combined, y, test_size=0.20, random_state=2)
clf = XGBClassifier(n_estimators=200)
clf = clf.fit(X_train, y_train)
y_pred_test = clf.predict(X_test)
y_pred_train = clf.predict(X_train)
score = accuracy_score(y_test, y_pred_test)
return score, clf, y_pred_train
def build_model_and_evaluate_rms(prev_pred=None):
model = Model3()
X_combined, y = model.combined_features(target="personality")
# combining the prediction of previous tasks to predict another task
if prev_pred is not None:
X_combined = pd.concat([X_combined, prev_pred])
# X, y = utils.extract_data(X_combined, label="personality")
X_train, X_test, y_train, y_test = train_test_split(X_combined, y, test_size=0.20, random_state = 2)
reg = RegressorChain(XGBRegressor(n_estimators=200,
max_depth=2,
objective="reg:squarederror"),
order = [0,3,1,4,2])
reg = reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
# Calculating RMSE for all personality
# order:
rmse = []
for i,value in enumerate(utils.regressor_labels):
rmse.append(sqrt(mean_squared_error(y_pred[:,i], y_test[value])))
return rmse, reg
if __name__ == "__main__":
accuracy_gender, clf, y_gender = build_model_and_evaluate(target="gender")
print("Accuracy for gender", accuracy_gender)
pickle.dump(clf, open("model_gender.pkl", 'wb'))
accuracy_age, clf, y_age = build_model_and_evaluate(target="age", prev_pred=None)
print("Accuracy for age", accuracy_age)
pickle.dump(clf, open("model_age.pkl", 'wb'))
rmse_personality, reg = build_model_and_evaluate_rms(prev_pred=None)#pd.concat[y_gender, y_age])
print("RMSE for regression", rmse_personality)
pickle.dump(reg, open("model_personality.pkl", 'wb'))
# We can run this multiple times where the previous predictions are continously fed back to improve predictions but we didnt notice significant improvements.