-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
268 lines (222 loc) · 14.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from generate_data import pickle_to_dataloader
import os
import torch
from torch import optim, nn, utils, Tensor
from torch.utils.data import TensorDataset, DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
#from pytorch_lightning.tuner import Tuner
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.tensorboard import SummaryWriter
import argparse
from models.model1 import SimplePolyModel
from models.lightningmodel import PLModel
from models.sl2models import SL2Net, MLP_for_Comparison, ScaleNet
from models.so2models import SO2Net
import numpy as np
import time
from utils import normalized_mse_loss, prepare_for_logger, fraction_psd
from torch import nn
from tests.helper import equiv_transform, equiv_transform_for_min_poly, equiv_transform_from_presaved_fxn, equiv_transform_for_min_poly_from_presaved_fxn
def main(args: argparse) -> None:
# Generate random data
if torch.cuda.is_available():
device = torch.device('cuda')
accelerator = "gpu"
else:
device = torch.device('cpu')
accelerator = "cpu"
print('device', device)
args.device = device
if args.unnormalized_loss:
loss_fn = nn.functional.mse_loss
else:
loss_fn = normalized_mse_loss
print('Using normalized loss')
if args.mode == 'min_poly' or args.mode == 'minimizer_poly':
if args.mode == 'min_poly':
equiv_function = (lambda x,y: equiv_transform_for_min_poly(x, y, thresh=args.thresh, cond_lb=args.cond_lb, rotation=args.only_test_rotations, A_and_induceds=None))
additional_loss_function = loss_fn
else:
equiv_function = None # this is possible to add, just need to write versions with appropriate output transformation
additional_loss_function = None
else:
equiv_function = (lambda x,y: equiv_transform(x, y, thresh=args.thresh, cond_lb=args.cond_lb, rotation=args.only_test_rotations))
if args.data_aug:
if args.precomputed_aug_file is not None:
# transform is dictionary with 'transform_file' key for precomputed file full path and 'transform_from_presaved_fxn'
# key that takes as input x, y, A, induced_mats
if args.mode == 'min_poly':
equiv_presaved_fxn = equiv_transform_for_min_poly_from_presaved_fxn
elif args.mode == 'max_det':
equiv_presaved_fxn = equiv_transform_from_presaved_fxn
transform = {'transform_file': args.precomputed_aug_file, 'transform_from_presaved_fxn': equiv_presaved_fxn}
else:
# transform is just fxn that takes in x, y and spits out augmented x, y
transform = equiv_function
else:
transform = None
print('normalize_data', args.normalize_data, 'normalize_val', args.normalize_val)
dsets, dloaders = pickle_to_dataloader(args.data_dir, args.batch_size, return_datasets=True, transvectant_scaling = args.transvectant_normalize, transform=transform, normalize=args.normalize_data)
print('have dataloaders')
# Includes computation for the MLP which is not used for an equivariant model, but doesn't matter (since fast).
for x, y in dloaders['train']:
if args.mode == 'min_poly' or args.mode == 'minimizer_poly':
x_keys = list(x.keys())
deg = max(x_keys)
input_degs = x_keys
if args.mode == 'min_poly':
output_size = 1
else:
output_size = 2
else: #
deg = x.shape[-1] - 1
input_degs = [deg]
if args.mode == 'def':
output_size = 1
elif args.mode == 'max_det':
output_size = (int(deg / 2) + 1)**2
additional_loss_function = (lambda pred,y: 1 - fraction_psd(pred, cutoff=-1*1e-5))
break
if args.generic_model:
# how many outputs depends on the application; may or may not need to reshape
base_model = MLP_for_Comparison(num_hidden = [sum(input_degs) + len(input_degs)] + args.mlp_arch + [output_size], mode=args.mode)
elif args.so2_model:
# previously said max(input_degs)???
if args.mode == 'min_poly':
inindeg = input_degs
else:
inindeg = max(input_degs)
base_model = SO2Net(input_deg = inindeg, num_layers = args.num_layers, num_internal_channels = args.num_internal_channels, max_irrep_degree = args.max_irrep, mode= args.mode, device=device, num_hidden_for_invar = args.invar_arch, precomputed_T_dir=os.path.join(args.precompute_dir, 'CGTmats')).to(device)
else:
mlp_args = {'on_input': args.use_input_mlp, 'input_arch': args.mlp_arch, 'before_output': args.use_output_mlp, 'output_arch': args.mlp_arch}
def gated_and_self(deg_i, deg_j):
if deg_i == 0 or deg_j == 0:
return True
if deg_i == deg_j:
return True
return False
if args.gated_and_self:
do_tensor_fxn = gated_and_self
else:
do_tensor_fxn = (lambda x, y: True)
base_model = SL2Net(input_degs = input_degs, num_layers=args.num_layers,
num_internal_channels=args.num_internal_channels, max_irrep_degree=args.max_irrep,
device=device, num_hidden_for_invar=args.invar_arch, batch_norm=not args.no_batch_norm,
do_skip=not args.no_skip, mode=args.mode, transvectant_normalize = False, # turned off from args.transvectant_normalize
scale_set_2=args.scale_set_2, precomputed_T_dir=os.path.join(args.precompute_dir, 'CGTmats'), mlp_args=mlp_args, do_tensor_fxn=do_tensor_fxn).to(device)
tangent_loss_ops={
'hermite': args.hermite,
'hermite_scaling': 1,
'pure_equivariance': args.pure_equivariance,
'pure_equivariance_scaling': 1,
}
# Initialize model
mymodel = PLModel(base_model, loss_fn=loss_fn, use_lr_scheduler=args.use_lr_scheduler, equiv_function=equiv_function, use_eval_mode=args.use_eval_mode, lr = args.learning_rate, additional_loss_function=additional_loss_function, normalize_val=args.normalize_val, tangent_loss_ops=tangent_loss_ops)
# Compute number of parameters in model, so that comparisons are fair
num_param = mymodel.num_param
print('Number of parameters in model', num_param)
if args.just_print_param:
return
start = time.time()
# Train
logger = TensorBoardLogger(save_dir=args.save_dir, name="my_model")
#summary_logger = SummaryWriter(save_dir=args.save_dir)
#logged_hparams = prepare_for_logger(mymodel.net.kwargs).update({"lr": mymodel.lr})
#logger.log_hyperparams(mymodel.hparams, logged_hparams)
checkpoint_callback = ModelCheckpoint(dirpath=args.save_dir, save_top_k=2, monitor="val_loss")
trainer = pl.Trainer(max_epochs=args.max_epochs, accelerator=accelerator, devices=1,
log_every_n_steps=1, logger=logger,
accumulate_grad_batches=1,
gradient_clip_val=0.0,
callbacks=[checkpoint_callback])
#limit_train_batches, other args poss.
#tuner = Tuner(trainer)
#tuner.scale_batch_size(mymodel, mode="power")
trainer.fit(model=mymodel, train_dataloaders=dloaders['train'], val_dataloaders=dloaders['val']) #, auto_lr_find=True)
end = time.time()
elapsed_time = (end-start)/60.0
print('generic_model ', args.generic_model, 'ELAPSED TIME (min): ', elapsed_time, 'save_dir', args.save_dir)
best_chkpt_path = trainer.checkpoint_callback.best_model_path
print('best_chkpt_path', best_chkpt_path)
directory_for_misc_saves = os.path.dirname(best_chkpt_path) # removed one dirname
saved_run_info_dict = {'best_chkpt_path': best_chkpt_path, 'model_kwargs': base_model.kwargs, 'num_param': num_param,
'learning_rate':args.learning_rate, 'elapsed_time': elapsed_time, 'train_losses': torch.tensor(mymodel.train_losses)}
torch.save(saved_run_info_dict, os.path.join(directory_for_misc_saves, 'saved_run_info'))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Training an SL(2)-equivariant model')
# General training arguments
parser.add_argument('--batch_size', type=int, default=32,
help='Number of instances per batch')
parser.add_argument('--max_epochs', type=int, default=50,
help='Maximum number of training epochs')
parser.add_argument('--data_dir', type=str, default=os.path.join(os.path.expanduser('~'), 'TransvectantNets_shared', 'data/equivariant/deg_8_train_5000_val_500_test_1000/'),
help='--')
parser.add_argument('--save_dir', type=str, default='trained_models_and_logs/',
help='--Directory in which to save pytorch_lightning outputs, model checkpoint, and Tensorboard log.')
parser.add_argument('--precompute_dir', type=str, default=os.path.join(os.path.expanduser('~'), 'TransvectantNets_shared/precomputations'),
help='--Directory in which to save general precomputations.')
parser.add_argument('--just_print_param', default=False, action='store_true',
help='--If included, just print the number of parameters in the specified model and return -- do not train.')
parser.add_argument('--unnormalized_loss', default=False, action='store_true',
help='--If included, use mse_loss instead of normalizing by y (normalizing is the default behavior).')
parser.add_argument('--mode', type=str, default='max_det',
help='--Mode by which the labels y were generated -- must match the mode used to generate data_dir via generate_data.py! --max_det for Gram matrix of maximal determinant (equivariant, matrix task), --def for definiteness (invariant, scalar task), --min_poly for minimizing a polynomial, --minimizer_poly for getting the location of the minimizer of a polynomial.')
parser.add_argument('--use_eval_mode', default=False, action='store_true',
help='--If included, use eval mode for the validation loss. Note that eval_mode is always used for the equivariance test.')
parser.add_argument('--data_aug', default=False, action='store_true',
help='--If included, use data augmentation. Defaults to SL2, but if flag for only_test_rotations, then just rotations.')
parser.add_argument('--precomputed_aug_file', type=str, default=None,
help='--If included, use precomputed from given file path to pkl file (if there\'s also a flag for data augmentation). ')
parser.add_argument('--normalize_data', action='store_true', default=False,
help='--Whether or not to normalize the input data. Turn off for min poly!')
parser.add_argument('--normalize_val', action='store_true', default=False,
help='--Whether or not to normalize the data at the automatic validation step. Turn off for min poly!')
parser.add_argument('--hermite', action='store_true', default=False,
help='--use hermite first order information in loss function. only for max det!')
parser.add_argument('--pure_equivariance', action='store_true', default=False,
help='--use basic equivariance in loss function. only for max det!')
# Arguments for an equivariant model
parser.add_argument('--max_irrep', type=int, default=10,
help='--')
parser.add_argument('--num_layers', type=int, default=2,
help='--')
parser.add_argument('--num_internal_channels', type=int,
default=2, help='--')
parser.add_argument('--invar_arch', nargs="+", type=int, default=[10, 10],
help='--Architecture for the MLP operating on the invariant irreps')
parser.add_argument('--no_skip', default=False, action='store_true',
help='--If included, no skip connections')
parser.add_argument('--no_batch_norm', default=False, action='store_true',
help='--If included, no batch norm')
parser.add_argument('--gated_and_self', default=False, action='store_true',
help='--If included, only do self-tensor products and tensor products with the invariant')
# Arguments for a non-equivariant model
parser.add_argument('--generic_model', default=False, action='store_true',
help='--If included, train a generic (non-equivariant) model instead of an equivariant one.')
parser.add_argument('--so2_model', default=False, action='store_true',
help='--If included, train an SO2 equivariant model instead of SL2.')
parser.add_argument('--mlp_arch', nargs="+", type=int, default=[20, 20],
help='--If included, train a generic (non-equivariant) model instead of an equivariant one.')
# Some more general arguments
parser.add_argument('--use_lr_scheduler', default=False, action='store_true',
help='--If included, use a scheduler for the learning rate.')
parser.add_argument('--thresh', type=float, default=10,
help='--Condition number maximum for generating SL2 matrices at validation time')
parser.add_argument('--cond_lb', type=float, default=1,
help='--Condition number lower bound for generating SL2 matrices at validation time')
parser.add_argument('--learning_rate', type=float, default = 3e-4, help="--Learning rate for optimizer.")
parser.add_argument('--transvectant_normalize', default=False, action='store_true',
help='--Normalize the inputs by psi_d(p,p)')
parser.add_argument('--scale_set_2', default=False, action='store_true',
help='--Set scale factor to 2')
parser.add_argument('--only_test_rotations', default=False, action='store_true',
help='--Only test rotations (note: not unitary after being induced, though) with the loss function on the transformed data')
parser.add_argument('--use_input_mlp', default=False, action='store_true',
help='--Use input mlp')
parser.add_argument('--use_output_mlp', default=False, action='store_true',
help='--Use output mlp')
args = parser.parse_args()
main(args)