-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
108 lines (82 loc) · 2.89 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
'''
Modified from https://github.com/pytorch/vision.git
'''
import math
import torch.nn as nn
import torch.nn.init as init
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
class VGG(nn.Module):
'''
VGG model
'''
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Linear(512, 10),
)
# Initialize weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M',
512, 512, 512, 512, 'M'],
}
def vgg11():
"""VGG 11-layer model (configuration "A")"""
return VGG(make_layers(cfg['A']))
def vgg11_bn():
"""VGG 11-layer model (configuration "A") with batch normalization"""
return VGG(make_layers(cfg['A'], batch_norm=True))
def vgg13():
"""VGG 13-layer model (configuration "B")"""
return VGG(make_layers(cfg['B']))
def vgg13_bn():
"""VGG 13-layer model (configuration "B") with batch normalization"""
return VGG(make_layers(cfg['B'], batch_norm=True))
def vgg16():
"""VGG 16-layer model (configuration "D")"""
return VGG(make_layers(cfg['D']))
def vgg16_bn():
"""VGG 16-layer model (configuration "D") with batch normalization"""
return VGG(make_layers(cfg['D'], batch_norm=True))
def vgg19():
"""VGG 19-layer model (configuration "E")"""
return VGG(make_layers(cfg['E']))
def vgg19_bn():
"""VGG 19-layer model (configuration 'E') with batch normalization"""
return VGG(make_layers(cfg['E'], batch_norm=True))