-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathapp.py
582 lines (502 loc) · 18.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import os
import cv2
import glob
import time
# import torch #gpu
import shutil
import platform
import tempfile
import threading
import subprocess
import insightface
import onnxruntime
import gradio as gr
import numpy as np
from threading import Thread
WORKSPACE = None
OUTPUT_FILE = None
CURRENT_FRAME = None
STREAMER = None
### provider
available_providers = onnxruntime.get_available_providers()
#provider = ["CUDAExecutionProvider", "CPUExecutionProvider"] #gpu
provider = ["CPUExecutionProvider"]
### load swapping model
model_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)), "inswapper_128.onnx"
)
MODEL = insightface.model_zoo.get_model(model_path, providers=provider)
### load face analyser
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=provider)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.5)
### ffmpeg
ffmpeg = "ffmpeg"
custom_ffmpeg_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "ffmpeg")
if os.path.exists(custom_ffmpeg_path):
ffmpeg = custom_ffmpeg_path
def change_analyse_settings(detection_size, detection_threshold):
yield "### \n Applying new values..."
global FACE_ANALYSER
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=provider)
FACE_ANALYSER.prepare(
ctx_id=0,
det_size=(detection_size, detection_size),
det_thresh=detection_threshold,
)
yield f"### \n Applied detection size: {detection_size} & detection threshold: {detection_threshold}"
def analyse_face(image, single_output=True):
source_faces = FACE_ANALYSER.get(image)
print(f"Number of faces detected {len(source_faces)}")
if not single_output:
return source_faces
if len(source_faces) > 1:
raise ValueError("More than one face")
return
if len(source_faces) == 0:
raise ValueError("No face detected")
return
return source_faces[0]
swap_options_list = [
"All face",
"Age less than",
"Age greater than",
"All Male",
"All Female",
]
def swap_face(source, target, condition, condition_value, skip_source_analyse=False):
source_face = source
if not skip_source_analyse:
source_face = analyse_face(source, single_output=True)
target_faces = analyse_face(target, single_output=False)
swapped = target.copy()
for face in target_faces:
if condition == swap_options_list[0]:
swapped = MODEL.get(swapped, face, source_face, paste_back=True)
elif condition == swap_options_list[1] and face["age"] < condition_value:
swapped = MODEL.get(swapped, face, source_face, paste_back=True)
elif condition == swap_options_list[2] and face["age"] > condition_value:
swapped = MODEL.get(swapped, face, source_face, paste_back=True)
elif condition == swap_options_list[3] and face["gender"] == 1:
swapped = MODEL.get(swapped, face, source_face, paste_back=True)
elif condition == swap_options_list[4] and face["gender"] == 0:
swapped = MODEL.get(swapped, face, source_face, paste_back=True)
return swapped
def trim_video(video_path, output_path, start_frame, stop_frame):
video_name, video_extension = os.path.splitext(os.path.basename(video_path))
trimmed_video_filename = video_name + "_trimmed" + video_extension
trimmed_video_file_path = os.path.join(output_path, trimmed_video_filename)
command = [
ffmpeg,
"-i",
video_path,
"-ss",
start_frame,
"-to",
stop_frame,
"-c:v",
"libx264",
"-c:a",
"aac",
"-strict",
"-2",
trimmed_video_file_path,
"-y",
]
out = subprocess.call(
" ".join(command),
shell=platform.system() != "Windows",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
if out == 0:
return trimmed_video_file_path, True
return None, False
def get_audio_from_video(video_path, output_directory):
video_name = os.path.splitext(os.path.basename(video_path))[0]
audio = os.path.join(output_directory, f"{video_name}_audio.wav")
command = [ffmpeg, "-v", "error", "-i", video_path, "-map", "0:a", audio, "-y"]
out = subprocess.call(
" ".join(command),
shell=platform.system() != "Windows",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
if out == 0:
return audio, True
return None, False
def image_sequence_to_video(
image_sequence_path, output_directory, audio=None, fps=30, filename="result.mp4"
):
output = os.path.join(output_directory, filename)
command = [
ffmpeg,
"-v",
"error",
"-framerate",
str(fps),
"-i",
image_sequence_path,
f"-i {audio}" if audio is not None else "",
"-c:v",
"libx264",
"-c:a",
"aac",
"-pix_fmt",
"yuv420p",
"-shortest",
output,
"-y",
]
out = subprocess.call(
" ".join(command),
shell=platform.system() != "Windows",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
if out == 0:
return output, True
return None, False
def open_directory(path=None):
if path is None:
return
try:
os.startfile(path)
except:
subprocess.Popen(["xdg-open", path])
class StreamerThread(object):
def __init__(self, src=0):
self.capture = cv2.VideoCapture(src)
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
self.FPS = 1 / 30
self.FPS_MS = int(self.FPS * 1000)
self.thread = None
self.stopped = False
self.frame = None
def start(self):
self.thread = Thread(target=self.update, args=())
self.thread.daemon = True
self.thread.start()
def stop(self):
self.stopped = True
self.thread.join()
print("stopped")
def update(self):
while not self.stopped:
if self.capture.isOpened():
(self.status, self.frame) = self.capture.read()
time.sleep(self.FPS)
def process(
input_type,
image_path,
video_path,
directory_path,
source_path,
output_path,
output_name,
condition,
condition_value,
trim,
trim_start,
trim_end,
):
global WORKSPACE
global OUTPUT_FILE
global PREVIEW
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
def ui_before():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
)
def ui_after():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(visible=False),
)
def ui_after_vid():
return (
gr.update(visible=False),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(value=OUTPUT_FILE, visible=True),
)
if input_type == "Image":
yield "### \n Swapping...", *ui_before()
source = cv2.imread(source_path)
target = cv2.imread(image_path)
swapped = swap_face(source, target, condition, condition_value)
filename = os.path.join(output_path, output_name + ".png")
cv2.imwrite(filename, swapped)
OUTPUT_FILE = filename
WORKSPACE = output_path
PREVIEW = swapped[:, :, ::-1]
yield "Done!", *ui_after()
elif input_type == "Video":
yield "### \n Starting...", *ui_before()
trimmed_video = None
if trim:
yield "### \n Trimming video...", *ui_before()
trimmed_video, success = trim_video(
video_path, output_path, trim_start, trim_end
)
if not success:
yield "### \n Trimming video failed", *ui_before()
return
video_path = trimmed_video
yield "### \n Analysing face...", *ui_before()
source = cv2.imread(source_path)
source = analyse_face(source, single_output=True)
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
temp_path = os.path.join(output_path, output_name)
if os.path.exists(temp_path):
shutil.rmtree(temp_path)
os.mkdir(temp_path)
img_format = "image-%03d.jpg"
swapped_seq_path = os.path.join(temp_path, img_format)
start_time = time.time()
bar_length = 20
bar = ["⬛"] * bar_length
for frame_index in range(total_frames):
ret, frame = cap.read()
if not ret:
break
swapped = frame
swapped = swap_face(
source, frame, condition, condition_value, skip_source_analyse=True
)
cv2.imwrite(swapped_seq_path % frame_index, swapped)
elapsed_time = time.time() - start_time
average_time_per_iteration = elapsed_time / (frame_index + 1)
remaining_iterations = total_frames - (frame_index + 1)
estimated_remaining_time = remaining_iterations * average_time_per_iteration
bar[int(frame_index / total_frames * bar_length)] = "🟨"
info_text = f"### \n({frame_index+1}/{total_frames}) {''.join(bar)} "
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)"
PREVIEW = swapped[:, :, ::-1]
yield info_text, *ui_before()
cap.release()
yield "### \n Merging image sequence...", *ui_before()
audio, success = get_audio_from_video(video_path, output_path)
merged_output, success = image_sequence_to_video(
swapped_seq_path, output_path, audio, fps=fps, filename=output_name + ".mp4"
)
if not success:
yield "### \n Merging image sequence failed", *ui_before()
return
yield "### \n Removing temp files...", *ui_before()
if audio is not None and os.path.exists(audio):
os.remove(audio)
if trim and os.path.exists(trimmed_video):
os.remove(trimmed_video)
if os.path.exists(temp_path):
shutil.rmtree(temp_path)
WORKSPACE = output_path
OUTPUT_FILE = merged_output
yield "Done!", *ui_after_vid()
elif input_type == "Directory":
yield "### \n Starting...", *ui_before()
source = cv2.imread(source_path)
source = analyse_face(source, single_output=True)
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
temp_path = os.path.join(output_path, output_name)
if os.path.exists(temp_path):
shutil.rmtree(temp_path)
os.mkdir(temp_path)
swapped = None
files = []
for file_path in glob.glob(os.path.join(directory_path, "*")):
if any(file_path.lower().endswith(ext) for ext in extensions):
files.append(file_path)
files_length = len(files)
filename = None
for i, file_path in enumerate(files):
target = cv2.imread(file_path)
swapped = swap_face(
source, target, condition, condition_value, skip_source_analyse=True
)
filename = os.path.join(temp_path, os.path.basename(file_path))
cv2.imwrite(filename, swapped)
info_text = f"### \n Processing file {i+1} of {files_length}"
PREVIEW = swapped[:, :, ::-1]
yield info_text, *ui_before()
WORKSPACE = temp_path
OUTPUT_FILE = filename
yield "Done!", *ui_after()
elif input_type == "Stream":
yield "Starting...", *ui_before()
source = cv2.imread(source_path)
source = analyse_face(source, single_output=True)
global STREAMER
STREAMER = StreamerThread(src=directory_path)
STREAMER.start()
while True:
try:
frame = STREAMER.frame
swapped = swap_face(
source, frame, condition, condition_value, skip_source_analyse=True
)
PREVIEW = swapped[:, :, ::-1]
yield f"Streaming...", *ui_before()
except AttributeError:
yield "Streaming...", *ui_before()
STREAMER.stop()
### Gradio
def update_radio(value):
if value == "Image":
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif value == "Video":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
elif value == "Directory":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
elif value == "Stream":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
def update_swap_option(value):
if value == swap_options_list[1] or value == swap_options_list[2]:
return gr.update(visible=True)
return gr.update(visible=False)
def stop_running():
if hasattr(STREAMER, "stop"):
STREAMER.stop()
del STREAMER
return "Cancelled"
with gr.Blocks() as interface:
gr.Markdown("# 🗿 Swap Mukham")
gr.Markdown("A simple face swapper based on insightface inswapper")
with gr.Row():
with gr.Row():
with gr.Column(scale=0.4):
source_image_input = gr.Image(
label="Source face", type="filepath", interactive=True
)
with gr.Group():
input_type = gr.Radio(
["Image", "Video", "Directory", "Stream"],
label="Target type",
value="Video",
)
with gr.Box(visible=False) as input_image_group:
image_input = gr.Image(
label="Target Image", interactive=True, type="filepath"
)
with gr.Box(visible=True) as input_video_group:
video_input = gr.Video(label="Target Video", interactive=True)
with gr.Accordion("✂️ Trim video", open=False):
enable_trim = gr.Checkbox(label="Enable", value=False)
with gr.Row():
trim_start = gr.Text(
label="Trim Start",
placeholder="HH:MM:SS",
interactive=True,
)
trim_end = gr.Text(
label="Trim End",
placeholder="HH:MM:SS",
interactive=True,
)
with gr.Box(visible=False) as input_directory_group:
direc_input = gr.Text(label="Path", interactive=True)
info = gr.Markdown(show_label=False, visible=True)
with gr.Column(scale=0.6):
with gr.Accordion("🎚️ Detection Settings", open=False):
detection_size = gr.Number(
label="Detection Size", value=640, interactive=True
)
detection_threshold = gr.Number(
label="Detection Threshold", value=0.5, interactive=True
)
apply_detection_settings = gr.Button("Apply settings")
with gr.Accordion("📄 Swap Options", open=False):
swap_option = gr.Radio(
swap_options_list,
label="Condition",
value=swap_options_list[0],
interactive=True,
)
condition_value = gr.Number(
value=25, label="Value", interactive=True, visible=False
)
with gr.Accordion("📤 Output Settings", open=False):
output_directory = gr.Text(
label="Output Directory", value=os.getcwd(), interactive=True
)
output_name = gr.Text(
label="Output Name", value="Result", interactive=True
)
with gr.Row():
swap_button = gr.Button("✨ Swap", variant="primary")
cancel_button = gr.Button("⛔ Cancel")
preview_image = gr.Image(label="Output", interactive=False)
preview_video = gr.Video(
label="Output", interactive=False, visible=False
)
with gr.Row():
output_directory_button = gr.Button("📂", interactive=False)
output_video_button = gr.Button("🎬", interactive=False)
input_type.change(
update_radio,
inputs=[input_type],
outputs=[input_image_group, input_video_group, input_directory_group],
)
swap_option.change(
update_swap_option, inputs=[swap_option], outputs=[condition_value]
)
apply_detection_settings.click(
change_analyse_settings,
inputs=[detection_size, detection_threshold],
outputs=[info],
)
swap_inputs = [
input_type,
image_input,
video_input,
direc_input,
source_image_input,
output_directory,
output_name,
swap_option,
condition_value,
enable_trim,
trim_start,
trim_end,
]
swap_outputs = [
info,
preview_image,
output_directory_button,
output_video_button,
preview_video,
]
swap_event = swap_button.click(fn=process, inputs=swap_inputs, outputs=swap_outputs)
cancel_button.click(
fn=stop_running, inputs=None, outputs=[info], cancels=[swap_event]
)
output_directory_button.click(
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
)
output_video_button.click(
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
)
if __name__ == "__main__":
interface.queue(concurrency_count=2, max_size=20).launch()