-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathattach_memory_bank.py
195 lines (161 loc) · 5.62 KB
/
attach_memory_bank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import argparse
from pathlib import Path
import numpy as np
import torch
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
from text.symbols import symbols
from models.models import SynthesizerTrn
from models.models import VAEMemoryBank
from utils import utils
from utils.data_utils import (
TextAudioLoaderWithDuration,
TextAudioCollateWithDuration,
)
from sklearn.cluster import KMeans
def load_net_g(hps, weights_path):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
hps.models,
).cuda()
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
def load_checkpoint(checkpoint_path, model, optimizer=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
if optimizer is not None:
optimizer.load_state_dict(checkpoint_dict["optimizer"])
saved_state_dict = checkpoint_dict["model"]
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
print(
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
)
return model, optimizer, learning_rate, iteration
model, optimizer, learning_rate, iteration = load_checkpoint(
weights_path, net_g, optim_g
)
return model, optimizer, learning_rate, iteration
def get_dataloader(hps):
train_dataset = TextAudioLoaderWithDuration(hps.data.training_files, hps.data)
collate_fn = TextAudioCollateWithDuration()
train_loader = DataLoader(
train_dataset,
num_workers=1,
shuffle=False,
pin_memory=False,
collate_fn=collate_fn,
batch_size=1,
)
return train_loader
def get_zs(net_g, dataloader, num_samples=0):
net_g.eval()
print(len(dataloader))
zs = []
with torch.no_grad():
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
duration,
) in enumerate(dataloader):
rank = 0
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
rank, non_blocking=True
)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
rank, non_blocking=True
)
duration = duration.cuda()
with autocast(enabled=hps.train.fp16_run):
(
y_hat,
l_length,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q, p_mask),
*_,
) = net_g(x, x_lengths, spec, spec_lengths, duration)
zs.append(z.squeeze(0).cpu())
if batch_idx % 100 == 99:
print(batch_idx, zs[batch_idx].shape)
if num_samples and batch_idx >= num_samples:
break
return zs
def k_means(zs):
X = torch.cat(zs, dim=1).transpose(0, 1).numpy()
print(X.shape)
kmeans = KMeans(n_clusters=1000, random_state=0, n_init="auto").fit(X)
print(kmeans.cluster_centers_.shape)
return kmeans.cluster_centers_
def save_memory_bank(bank):
state_dict = bank.state_dict()
torch.save(state_dict, "./bank_init.pth")
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
state_dict = model.state_dict()
torch.save(
{
"model": state_dict,
"iteration": iteration,
"optimizer": optimizer.state_dict(),
"learning_rate": learning_rate,
},
checkpoint_path,
)
print("Saving model to " + checkpoint_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, default="configs/ljs.json")
parser.add_argument("--weights_path", type=str)
parser.add_argument(
"--num_samples",
type=int,
default=0,
help="samples to use for k-means clustering, 0 for use all samples in dataset",
)
args = parser.parse_args()
hps = utils.get_hparams_from_file(args.config)
net_g, optimizer, lr, iterations = load_net_g(hps, weights_path=args.weights_path)
dataloader = get_dataloader(hps)
zs = get_zs(net_g, dataloader, num_samples=args.num_samples)
centers = k_means(zs)
memory_bank = VAEMemoryBank(
**hps.models.memory_bank,
init_values=torch.from_numpy(centers).cuda().transpose(0, 1)
)
save_memory_bank(memory_bank)
net_g.memory_bank = memory_bank
optimizer.add_param_group(
{
"params": list(memory_bank.parameters()),
"initial_lr": optimizer.param_groups[0]["initial_lr"],
}
)
p = Path(args.weights_path)
save_path = p.with_stem(p.stem + "_with_memory").__str__()
save_checkpoint(net_g, optimizer, lr, iterations, save_path)
# test
print(memory_bank(torch.randn((2, 192, 12))).shape)