-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.cpp
243 lines (201 loc) · 8.54 KB
/
app.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include <iostream>
#include <map>
#include <vector>
#include <algorithm>
#include <cstdlib>
#include <chrono>
#include <thread>
#include <fstream>
#include <ctime>
#include <curl/curl.h>
#include <Eigen/Dense>
#include "nlohmann/json.hpp"
#include "data.h"
#include "filters.h"
#include "models.h"
#include "load_env.h"
#include "load_json.h"
#include "fred.h"
#include "interpolations.h"
#include "helpers.h"
// Function for option interpolation
void perform_option_interpolation(const std::string &ticker, const std::string &date, const std::string &option_type, double min_overpriced, double min_underpriced, double min_oi)
{
std::cout << "Ticker: " << ticker << std::endl;
std::cout << "Date: " << date << std::endl;
std::cout << "Option Type: " << option_type << std::endl;
std::cout << "Min Overpriced: " << min_overpriced << std::endl;
std::cout << "Min Underpriced: " << min_underpriced << std::endl;
std::cout << "Min OI: " << min_oi << std::endl;
initialize_quote_data();
double S = 566.345;
double T = 0.015708354371353372;
double q = 0.0035192;
std::vector<double> strikes;
for (const auto &pair : quote_data)
{
strikes.push_back(pair.first);
}
std::sort(strikes.begin(), strikes.end());
std::vector<double> filtered_strikes = filter_strikes(strikes, S, 1.25);
std::map<double, QuoteData> filtered_data;
for (double strike : filtered_strikes)
{
if (quote_data.find(strike) != quote_data.end())
{
filtered_data[strike] = quote_data[strike];
}
}
filtered_data = filter_by_bid_price(filtered_data);
for (auto &pair : filtered_data)
{
double K = pair.first;
QuoteData &data = pair.second;
data.mid_IV = calculate_implied_volatility_baw(data.mid, S, K, risk_free_rate, T, q, option_type);
data.bid_IV = calculate_implied_volatility_baw(data.bid, S, K, risk_free_rate, T, q, option_type);
data.ask_IV = calculate_implied_volatility_baw(data.ask, S, K, risk_free_rate, T, q, option_type);
}
filtered_data = filter_by_mid_iv(filtered_data);
filtered_strikes.clear();
for (const auto &pair : filtered_data)
{
filtered_strikes.push_back(pair.first);
}
if (filtered_strikes.size() >= 20)
{
Eigen::VectorXd x_eigen(filtered_strikes.size());
Eigen::VectorXd mid_iv_eigen(filtered_strikes.size());
Eigen::VectorXd bid_iv_eigen(filtered_strikes.size());
Eigen::VectorXd ask_iv_eigen(filtered_strikes.size());
Eigen::VectorXd open_interest_eigen(filtered_strikes.size());
Eigen::VectorXd mid_eigen(filtered_strikes.size());
for (size_t i = 0; i < filtered_strikes.size(); ++i)
{
x_eigen[i] = filtered_strikes[i];
mid_iv_eigen[i] = filtered_data[filtered_strikes[i]].mid_IV;
bid_iv_eigen[i] = filtered_data[filtered_strikes[i]].bid_IV;
ask_iv_eigen[i] = filtered_data[filtered_strikes[i]].ask_IV;
open_interest_eigen[i] = filtered_data[filtered_strikes[i]].open_interest;
mid_eigen[i] = filtered_data[filtered_strikes[i]].mid;
}
double x_min = x_eigen.minCoeff();
double x_max = x_eigen.maxCoeff();
Eigen::VectorXd x_normalized_eigen(filtered_strikes.size());
for (Eigen::Index i = 0; i < x_eigen.size(); ++i)
{
x_normalized_eigen[i] = (x_eigen[i] - x_min) / (x_max - x_min);
x_normalized_eigen[i] += 0.5;
}
Eigen::VectorXd log_x_normalized_eigen = x_normalized_eigen.array().log();
auto interpolator = rbf_model(log_x_normalized_eigen, mid_iv_eigen, 0.5);
Eigen::VectorXd rfv_params = fit_model(x_normalized_eigen, mid_iv_eigen, bid_iv_eigen, ask_iv_eigen);
Eigen::VectorXd fine_x_normalized = Eigen::VectorXd::LinSpaced(800, x_normalized_eigen.minCoeff(), x_normalized_eigen.maxCoeff());
Eigen::VectorXd log_fine_x_normalized = fine_x_normalized.array().log();
Eigen::VectorXd rbf_interpolated_y = interpolator(log_fine_x_normalized);
Eigen::VectorXd rfv_interpolated_y = rfv_model(log_fine_x_normalized, rfv_params);
Eigen::VectorXd interpolated_y = 0.75 * rfv_interpolated_y + 0.25 * rbf_interpolated_y;
Eigen::VectorXd y_pred = interp1d(x_normalized_eigen, fine_x_normalized, interpolated_y);
double rmse = calculate_rmse(mid_iv_eigen, y_pred);
std::cout << "RMSE of the fit: " << rmse << std::endl;
std::vector<Eigen::Index> valid_indices;
for (Eigen::Index i = 0; i < open_interest_eigen.size(); ++i)
{
if (open_interest_eigen[i] >= min_oi)
{
valid_indices.push_back(i);
}
}
Eigen::VectorXd fine_x = Eigen::VectorXd::LinSpaced(800, x_eigen.minCoeff(), x_eigen.maxCoeff());
Eigen::VectorXd filtered_x_eigen(valid_indices.size());
Eigen::VectorXd filtered_mid_iv_eigen(valid_indices.size());
Eigen::VectorXd filtered_bid_iv_eigen(valid_indices.size());
Eigen::VectorXd filtered_ask_iv_eigen(valid_indices.size());
Eigen::VectorXd filtered_open_interest_eigen(valid_indices.size());
Eigen::VectorXd filtered_mid_eigen(valid_indices.size());
for (Eigen::Index i = 0; i < static_cast<Eigen::Index>(valid_indices.size()); ++i)
{
Eigen::Index idx = valid_indices[i];
filtered_x_eigen[i] = x_eigen[idx];
filtered_mid_iv_eigen[i] = mid_iv_eigen[idx];
filtered_bid_iv_eigen[i] = bid_iv_eigen[idx];
filtered_ask_iv_eigen[i] = ask_iv_eigen[idx];
filtered_open_interest_eigen[i] = open_interest_eigen[idx];
filtered_mid_eigen[i] = mid_eigen[idx];
}
if (filtered_x_eigen.size() >= 2)
{
Eigen::VectorXd mispricings(valid_indices.size());
for (Eigen::Index i = 0; i < filtered_x_eigen.size(); ++i)
{
double strike = filtered_x_eigen[i];
Eigen::VectorXd diff = (fine_x.array() - strike).abs();
Eigen::Index closest_index;
diff.minCoeff(&closest_index);
double interpolated_iv = interpolated_y[closest_index];
double mid_value = filtered_mid_eigen[i];
double option_price = barone_adesi_whaley_american_option_price(S, strike, T, risk_free_rate, interpolated_iv, q, option_type);
double diff_price = mid_value - option_price;
mispricings[i] = diff_price;
}
for (Eigen::Index i = 0; i < filtered_x_eigen.size(); ++i)
{
std::cout << "Strike: " << filtered_x_eigen[i]
<< ", Mid Price: " << filtered_mid_eigen[i]
<< ", Mispricing: " << mispricings[i] << std::endl;
}
write_csv("original_strikes_mid_iv.csv", filtered_x_eigen, filtered_mid_iv_eigen);
write_csv("interpolated_strikes_iv.csv", fine_x, interpolated_y);
std::cout << "Data written to CSV files successfully." << std::endl;
}
}
}
/**
* @brief Entry point of the application.
*
* Loads environment variables, initializes data, and runs the option interpolation loop.
*
* @return int Exit status code.
*/
int main()
{
load_env_file(".env");
if (schwab_api_key.empty() || schwab_secret.empty() || callback_url.empty() || account_hash.empty() || fred_api_key.empty())
{
std::cerr << "Error: One or more environment variables are missing." << std::endl;
return 1;
}
if (!dry_run)
{
std::cout << "Bot is Live." << std::endl;
}
load_json_file("stocks.json");
fetch_risk_free_rate(fred_api_key);
StockNode *current_node = stocks_data_head;
if (current_node == nullptr)
{
std::cerr << "No stock data loaded from the JSON file." << std::endl;
return 1;
}
while (true)
{
if (is_nyse_open() || dry_run)
{
perform_option_interpolation(
current_node->ticker,
current_node->date,
current_node->option_type,
std::stod(current_node->min_overpriced),
std::stod(current_node->min_underpriced),
std::stod(current_node->min_oi));
current_node = current_node->next;
}
else
{
std::cout << "NYSE is currently closed." << std::endl;
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(time_to_rest));
break;
}
return 0;
}