forked from hello-robot/stretch_visual_servoing
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharuco_detector.py
271 lines (220 loc) · 10.8 KB
/
aruco_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python3
import cv2
import numpy as np
import cv2.aruco as aruco
def minimum_distance_between_corners(corners):
# calculate the 6 distances between the corners and return the minimum
c0 = corners[0]
dist0 = np.min(np.linalg.norm(corners[1:4] - c0, axis=1))
c1 = corners[1]
dist1 = np.min(np.linalg.norm(corners[2:4] - c1, axis=1))
c2 = corners[2]
dist2 = np.min(np.linalg.norm(corners[3:4] - c2, axis=1))
return np.min(np.array([dist0, dist1, dist2]))
class ArucoMarker:
def __init__(self, aruco_id, marker_info, show_debug_images=False):
self.show_debug_images = show_debug_images
self.aruco_id = aruco_id
colormap = cv2.COLORMAP_HSV
offset = 0
i = (offset + (self.aruco_id * 29)) % 255
image = np.uint8([[[i]]])
id_color_image = cv2.applyColorMap(image, colormap)
bgr = id_color_image[0,0]
self.id_color = [bgr[2], bgr[1], bgr[0]]
self.frame_id = 'camera_color_optical_frame'
self.info = marker_info.get(str(self.aruco_id), None)
if self.info is None:
self.info = marker_info['default']
self.length_of_marker_mm = self.info['length_mm']
self.use_rgb_only = self.info['use_rgb_only']
self.frame_number = None
self.ready = False
self.x_axis = None
self.y_axis = None
self.z_axis = None
self.min_dist_between_corners = None
def update(self, corners, frame_number, rgb_camera_info):
self.corners = corners
self.frame_number = frame_number
self.rgb_camera_info = rgb_camera_info
self.camera_matrix = self.rgb_camera_info['camera_matrix']
self.distortion_coefficients = self.rgb_camera_info['distortion_coefficients']
rvecs = np.zeros((1, 1, 3), dtype=np.float64)
tvecs = np.zeros((1, 1, 3), dtype=np.float64)
points_3D = np.array([
(-self.length_of_marker_mm / 2, self.length_of_marker_mm / 2, 0),
(self.length_of_marker_mm / 2, self.length_of_marker_mm / 2, 0),
(self.length_of_marker_mm / 2, -self.length_of_marker_mm / 2, 0),
(-self.length_of_marker_mm / 2, -self.length_of_marker_mm / 2, 0),
])
unknown_variable, rvecs_ret, tvecs_ret = cv2.solvePnP(objectPoints=points_3D,
imagePoints=self.corners,
cameraMatrix=self.camera_matrix,
distCoeffs=self.distortion_coefficients)
rvecs[0][:] = np.transpose(rvecs_ret)
tvecs[0][:] = np.transpose(tvecs_ret)
self.aruco_rotation = rvecs[0][0]
# Convert ArUco position estimate to be in meters.
self.aruco_position = tvecs[0][0]/1000.0
aruco_depth_estimate = self.aruco_position[2]
self.marker_position = self.aruco_position
R = np.identity(4)
R[:3,:3] = cv2.Rodrigues(self.aruco_rotation)[0]
self.x_axis = R[:3,0]
self.y_axis = R[:3,1]
self.z_axis = R[:3,2]
self.ready = True
def get_min_dist_between_corners(self):
return minimum_distance_between_corners(self.corners)
def get_position_and_axes(self):
# return copies of the position and axes
pos = np.array(self.marker_position)
x_axis = np.array(self.x_axis)
y_axis = np.array(self.y_axis)
z_axis = np.array(self.z_axis)
return pos, x_axis, y_axis, z_axis
def get_info(self):
# return copy of marker_info
return self.info.copy()
def get_marker_poly(self):
poly_points = np.array(corners)
poly_points = np.round(poly_points).astype(np.int32)
return poly_points
def draw_marker_poly(self, image):
poly_points = self.get_marker_poly()
cv2.fillConvexPoly(image, poly_points, (255, 0, 0))
class ArucoMarkerCollection:
def __init__(self, marker_info, show_debug_images=False, use_apriltag_refinement=False, brighten_images=False):
self.show_debug_images = show_debug_images
self.use_apriltag_refinement = use_apriltag_refinement
self.marker_info = marker_info
self.aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_6X6_250)
# https://docs.opencv.org/4.x/d1/dcd/structcv_1_1aruco_1_1DetectorParameters.html
self.aruco_detection_parameters = aruco.DetectorParameters()
# Apparently available in OpenCV 3.4.1, but not OpenCV 3.2.0.
#self.aruco_detection_parameters.useAruco3Detection = True
if self.use_apriltag_refinement:
self.aruco_detection_parameters.cornerRefinementMethod = aruco.CORNER_REFINE_APRILTAG
else:
self.aruco_detection_parameters.cornerRefinementMethod = aruco.CORNER_REFINE_SUBPIX
#self.aruco_detection_parameters.cornerRefinementWinSize = 2
self.collection = {}
self.detector = aruco.ArucoDetector(self.aruco_dict, self.aruco_detection_parameters)
self.frame_number = 0
self.brighten_images = brighten_images
if self.brighten_images:
self.adaptive_equalization = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
else:
self.adaptive_equalization = None
def __iter__(self):
# iterates through currently visible ArUco markers
keys = self.collection.keys()
for k in keys:
marker = self.collection[k]
if marker.frame_number == self.frame_number:
yield marker
def draw_markers(self, image):
return aruco.drawDetectedMarkers(image, self.aruco_corners, self.aruco_ids)
def update(self, rgb_image, rgb_camera_info):
self.frame_number += 1
self.rgb_image = rgb_image
self.rgb_camera_info = rgb_camera_info
self.gray_image = cv2.cvtColor(self.rgb_image, cv2.COLOR_BGR2GRAY)
# Equalize the gray scale image to improve ArUco marker
# detection in low exposure time images. Low exposure reduces
# motion blur, which interferes with ArUco detecction.
#
# https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
#
#self.gray_image = cv2.equalizeHist(self.gray_image)
if self.adaptive_equalization is not None:
self.gray_image = self.adaptive_equalization.apply(self.gray_image)
image_height, image_width = self.gray_image.shape
self.aruco_corners, self.aruco_ids, aruco_rejected_image_points = self.detector.detectMarkers(self.gray_image)
if self.aruco_ids is None:
num_detected = 0
else:
num_detected = len(self.aruco_ids)
if self.aruco_ids is not None:
for corners, aruco_id in zip(self.aruco_corners, self.aruco_ids):
aruco_id = int(aruco_id)
marker = self.collection.get(aruco_id, None)
if marker is None:
new_marker = ArucoMarker(aruco_id, self.marker_info, self.show_debug_images)
self.collection[aruco_id] = new_marker
self.collection[aruco_id].update(corners[0], self.frame_number, self.rgb_camera_info)
class ArucoDetector():
def __init__(self, marker_info=None, show_debug_images=False, use_apriltag_refinement=False, brighten_images=False):
self.rgb_image = None
self.camera_info = None
self.all_points = []
self.show_debug_images = show_debug_images
self.use_apriltag_refinement = use_apriltag_refinement
self.brighten_images = brighten_images
self.publish_marker_point_clouds = False
self.marker_info = marker_info
if self.marker_info is None:
self.marker_info = {}
self.aruco_marker_collection = ArucoMarkerCollection(self.marker_info, self.show_debug_images, self.use_apriltag_refinement, self.brighten_images)
def update(self, rgb_image, rgb_camera_info):
self.rgb_image = rgb_image
self.rgb_camera_info = rgb_camera_info
self.aruco_marker_collection.update(self.rgb_image, self.rgb_camera_info)
# save rotation for last
if self.show_debug_images:
aruco_image = self.aruco_marker_collection.draw_markers(self.rgb_image)
#display_aruco_image = cv2.rotate(aruco_image, cv2.ROTATE_90_COUNTERCLOCKWISE)
#cv2.imshow('Detected ArUco Markers', display_aruco_image)
#cv2.imshow('Detected ArUco Markers', aruco_image)
#cv2.waitKey(2)
def get_detected_marker_dict(self):
out = {}
for m in self.aruco_marker_collection:
aruco_id = m.aruco_id
pos, x_axis, y_axis, z_axis = m.get_position_and_axes()
min_dist_between_corners = m.get_min_dist_between_corners()
info = m.get_info()
out[aruco_id] = {'pos': pos,
'x_axis': x_axis, 'y_axis': y_axis, 'z_axis': z_axis,
'min_dist_between_corners': min_dist_between_corners,
'info': info}
return out
def get_detected_markers(self):
markers = self.get_detected_marker_dict()
# This changes keys to be marker names to make code less
# sensitive to marker changes. Ideally, only the ArUco
# detection code, as informed by the YAML file, cares about
# the marker numbers.
new_markers = {}
for marker_num in markers.keys():
m = markers[marker_num]
m['info']['marker_id'] = marker_num
marker_name = m['info']['name']
new_markers[marker_name] = m
return(new_markers)
def get_special_frames(marker_dict):
# only find origins of the special frames via translation
# rpy rotation not implemented, yet
info = marker_dict['info']
frames = info.get('frames')
out = {}
if frames is not None:
marker_pos = marker_dict['pos']
marker_x_axis = marker_dict['x_axis']
marker_y_axis = marker_dict['y_axis']
marker_z_axis = marker_dict['z_axis']
for k in frames:
t = frames[k]['trans']
rpy = frames[k]['rpy']
frame_pos = marker_pos + (t[0] * marker_x_axis) + (t[1] * marker_y_axis) + (t[2] * marker_z_axis)
frame_x_axis = np.copy(marker_x_axis)
frame_y_axis = np.copy(marker_y_axis)
frame_z_axis = np.copy(marker_z_axis)
out[k] = {'pos': frame_pos, 'x_axis': frame_x_axis, 'y_axis': frame_y_axis, 'z_axis': frame_z_axis}
return(out)
def main(args=None):
detector = ArucoDetector()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()