diff --git a/README.md b/README.md index 473234970..05595c790 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# ML Downscaling Emulator +# ML Downscaling Emulator Forked from PyTorch implementation for the paper [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) @@ -6,11 +6,10 @@ by [Yang Song](https://yang-song.github.io), [Jascha Sohl-Dickstein](http://www. ## Dependencies -1. Create conda environment: `conda env create -f environment.lock.yml` -2. Clone and install https://github.com/henryaddison/mlde_utils into the environment: e.g. `pip install -e ../mlde_utils` -3. Install ml_downscaling_emulator locally: `pip install -e .` -4. Install unet code: `git clone --depth 1 git@github.com:henryaddison/Pytorch-UNet src/ml_downscaling_emulator/unet` -5. Configure necessary environment variables: `DERVIED_DATA` and `KK_SLACK_WH_URL` +1. Create conda environment: `conda env create -f environment.lock.yml` (or add dependencies to your own `conda env install -f environment.txt`) +2. Install ml_downscaling_emulator locally: `pip install -e .` +3. Install unet code: `git clone --depth 1 git@github.com:henryaddison/Pytorch-UNet src/ml_downscaling_emulator/unet` +4. Configure necessary environment variables: `DERVIED_DATA` and `KK_SLACK_WH_URL` ### Usage @@ -42,7 +41,7 @@ main.py: * `workdir` is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results. * `mode` is "train". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in `workdir/checkpoints-meta` . - + These functionalities can be configured through config files, or more conveniently, through the command-line support of the `ml_collections` package. For example, to generate samples and evaluate sample quality, supply the `--config.eval.enable_sampling` flag; to compute log-likelihoods, supply the `--config.eval.enable_bpd` flag, and specify `--config.eval.dataset=train/test` to indicate whether to compute the likelihoods on the training or test dataset. #### Sampling @@ -60,7 +59,7 @@ TODO ## References -This code based on the following work: +This code based on the following work: ```bib @inproceedings{ song2021scorebased,