Skip to content

Latest commit

 

History

History
462 lines (388 loc) · 49.1 KB

命令行参数.md

File metadata and controls

462 lines (388 loc) · 49.1 KB

命令行参数

目录

sft 参数

  • --🔥model_type: 表示你选择的模型类型, 默认是None. model_type指定了对应模型默认的target_modules, template_type等信息. 你可以通过只指定model_type进行微调. 对应的model_id_or_path会使用默认的设置, 从ModelScope进行下载, 并使用默认的缓存路径. model_type和model_id_or_path必须指定其中的一个. 可以选择的model_type可以查看支持的模型. 你可以设置USE_HF环境变量来控制从HF Hub下载模型和数据集, 参考HuggingFace生态兼容文档.
  • --🔥model_id_or_path: 表示模型在ModelScope/HuggingFace Hub中的model_id或者本地路径, 默认为None. 如果传入的model_id_or_path已经被注册, 则会根据model_id_or_path推断出model_type. 如果未被注册, 则需要同时指定model_type, e.g. --model_type <model_type> --model_id_or_path <model_id_or_path>.
  • --model_revision: 表示模型在ModelScope Hub中对应model_id的版本号, 默认为None. model_revision指定为None, 则使用注册在MODEL_MAPPING中的revision. 否则强制使用命令行传入的model_revision.
  • --local_repo_path: 部分模型在加载时依赖于github repo. 为了避免git clone时遇到网络问题, 可以直接使用本地repo. 该参数需要传入本地repo的路径, 默认为None. 这部分模型包括:
    • mPLUG-Owl模型: https://github.com/X-PLUG/mPLUG-Owl
    • DeepSeek-VL模型: https://github.com/deepseek-ai/DeepSeek-VL
    • YI-VL模型: https://github.com/01-ai/Yi
    • LLAVA模型: https://github.com/haotian-liu/LLaVA.git
  • --🔥sft_type: 表示微调的方式, 默认是'lora'. 你可以选择的值包括: 'lora', 'full', 'longlora', 'adalora', 'ia3', 'llamapro', 'adapter', 'vera', 'boft', 'fourierft', 'reft'. 如果你要使用qlora, 你需设置--sft_type lora --quantization_bit 4.
  • --packing: pack数据集到max-length, 默认值False.
  • --full_determinism: 固定所有的随机性, 默认值False.
  • --auto_find_batch_size: 根据显存值自定找到batch_size, 默认值False.
  • --streaming: 是否使用流式数据处理, 默认值False.
  • --freeze_parameters: 当sft_type指定为'full'时, 将以freeze_parameters为前缀的层进行freeze. 默认为[]. 例如: --freeze_parameters visual.
  • --🔥freeze_vit: 当sft_type指定为'full', 且训练的是多模态模型时, 可以通过将该参数设置为True来冻结vit的参数. 默认指为False.
  • --freeze_parameters_ratio: 当sft_type指定为'full'时, 将模型最底部的参数进行freeze. 指定范围为0. ~ 1., 默认为0.. 该参数提供了lora与全参数微调的折中方案.
  • --additional_trainable_parameters: 作为freeze_parameters的补充, 只有在sft_type指定为'full'才允许被使用, 默认为[]. 例如你如果想训练50%的参数的情况下想额外训练embedding层, 你可以设置--freeze_parameters_ratio 0.5 --additional_trainable_parameters transformer.wte, 所有以transformer.wte开头的parameters都会被激活. 你也可以设置--freeze_parameters_ratio 1 --additional_trainable_parameters xxx来自定义可以训练的层.
  • --tuner_backend: 表示lora, qlora的后端支持, 默认是'peft'. 你可以选择的值包括: 'swift', 'peft', 'unsloth'.
  • --🔥template_type: 表示使用的对话模板的类型, 默认是'AUTO', 即根据model_type查找MODEL_MAPPING中的template. 可以选择的template_type可以查看TEMPLATE_MAPPING.keys().
  • --🔥output_dir: 表示ckpt存储的目录, 默认是'output'. 我们会在该目录后拼接model_type和微调版本号. 方便用户对不同模型进行多次对比实验, 而不需要改变output_dir命令行参数. 如果不需要拼接这些内容, 你需要额外指定参数--add_output_dir_suffix false.
  • --add_output_dir_suffix: 默认为True, 表示会在output_dir的目录后拼接上model_type和微调版本号的后缀. 如果要避免此行为, 你可以设置为False.
  • --ddp_backend: 表示分布式的后端支持, 默认是None. 你可以选择的值包括: 'nccl', 'gloo', 'mpi', 'ccl'.
  • --ddp_timeout: DDP timeout. 默认1800秒.
  • --seed: 全局的seed, 默认使用42. 用于复现训练效果.
  • --🔥resume_from_checkpoint: 用于断点续训, 默认为None. 你可以将其设置为checkpoint的路径, 例如: --resume_from_checkpoint output/qwen-7b-chat/vx-xxx/checkpoint-xxx, 来进行断点续训. 支持调节--resume_only_model在断点续训时只读取模型文件.
  • --resume_only_model: 默认为False, 即为严格的断点续训, 这会读取模型、优化器和lr_scheduler的权重和各个设备存储的随机种子, 并将从上次训练暂停的stpes后继续计数进行训练. 如果设置为True, 则只读取模型的权重.
  • --dtype: 基模型载入时的torch_dtype, 默认为'AUTO', 即智能选择dtype: 如果机器不支持bf16, 则使用fp16, 如果MODEL_MAPPING中对应模型有指定torch_dtype, 则使用其对应dtype, 否则使用bf16. 你可以选择的值包括: 'bf16', 'fp16', 'fp32'.
  • --model_kwargs: 用于传入多模态模型中针对于模型的额外参数, 例如: '{"hd_num": 16}'. 你可以传入json字符串或者直接传入字典. 默认为None. 除了使用该参数,你也可以通过环境变量传入, 例如: HD_NUM=16.
  • --🔥dataset: 用于选择训练的数据集, 默认为[]. 可以选择的数据集可以查看支持的数据集. 如果需要使用多个数据集进行训练, 你可以使用','或者' '进行分割, 例如: --dataset alpaca-en,alpaca-zh or --dataset alpaca-en alpaca-zh. 支持Modelscope Hub/HuggingFace Hub/本地路径、subsets选择与数据集采样, 每个数据集指定格式如下: [HF or MS::]{dataset_name} or {dataset_id} or {dataset_path}[:subset1/subset2/...][#dataset_sample], 最简只需要指定dataset_name、dataset_id或者dataset_path即可. 自定义数据集可以查看数据集的自定义与拓展文档.
    • 支持MS和HF hub, 以及dataset_sample的支持. e.g. 'MS::alpaca-zh#2000', 'HF::jd-sentiment-zh#2000' (默认使用的hub, 由USE_UF环境变量控制, 默认MS).
    • 对subsets更细粒度的控制: 默认使用注册时指定的subsets(注册时未指定则使用'default'). e.g. 'sharegpt-gpt4'. 如果指定subsets则使用对应子集的数据集. e.g. 'sharegpt-gpt4:default/V3_format#2000'. 这里使用defaultV3_format子数据集, 使用'/'进行分隔, 并取2000条.
    • dataset_id的支持. e.g. 'AI-ModelScope/alpaca-gpt4-data-zh#2000', 'HF::llm-wizard/alpaca-gpt4-data-zh#2000', 'hurner/alpaca-gpt4-data-zh#2000', 'HF::shibing624/alpaca-zh#2000'. 如果dataset_id已经注册,则会使用注册时的预处理函数、subsets、split等. 否则使用SmartPreprocessor, 支持5种数据集格式, 并使用'default'的subsets, split设置为'train'. 支持的数据集格式可以查看数据集的自定义与拓展文档.
    • dataset_path的支持. e.g. '1.jsonl#5000'. (如果是相对路径,则为相对于运行目录的相对路径).
  • --val_dataset: 用于指定单独的验证集, 格式和dataset参数相同, 默认为[]. 如果使用本参数, 则dataset_test_ratio不再生效.
  • --dataset_seed: 用于指定数据集处理的seed, 默认为None, 即指定为全局seed. dataset_seed以random_state形式存在, 不影响全局seed.
  • --dataset_test_ratio: 用于指定子数据集切分成训练集和验证集的比例, 默认为0.01. 若设置了--val_dataset, 则该参数失效.
  • --train_dataset_sample: 对训练集的采样数, 默认是-1, 即使用完整的训练集进行训练. 该参数已废弃, 请使用--dataset {dataset_name}#{dataset_sample}
  • --val_dataset_sample: 对验证集进行采样, 默认是None, 自动选取合适数量的数据集数量进行验证. 如果你指定为-1, 则使用完整的验证集进行验证. 该参数已废弃, 验证集数量由--dataset_test_ratio或者--val_dataset {dataset_name}#{dataset_sample}控制.
  • --🔥system: 对话模板中使用的system, 默认为None, 即使用模型默认的system. 如果指定为'', 则不使用system.
  • --tools_prompt: 选择tools字段转化的相应tools system prompt, 可选项为['react_en','react_zh', 'toolbench'], 分别为英文版ReAct格式,中文版ReAct格式和toolbench格式,默认为英文版ReAct格式。如果你想了解更多,可以参考Agent部署最佳实践
  • --🔥max_length: token的最大长度, 默认为2048. 可以避免个别过长的数据样本造成OOM的问题. 当指定--truncation_strategy delete时, 如果某数据样本长度超过max_length, 我们会删除该数据样本. 如果指定--truncation_strategy truncation_left时, 我们会切除最前面的token: input_ids[-max_length:]. 如果设置为-1, 则无限制.
  • --truncation_strategy: 默认是'delete'表示把超过max_length的句子从数据集中删除. 'truncation_left'表示会将超过文本的左边给切除掉, 这可能会切到special token, 会影响性能, 并不推荐.
  • --check_dataset_strategy: 默认值为'none', 即不做检查. 如果你训练的模型是LLM, 则推荐使用'warning'作为数据检查的策略. 如果你的训练目标为句子分类等任务, 则建议设置为'none'.
  • --custom_train_dataset_path: 默认值为[]. 该参数已废弃, 请使用--dataset {dataset_path}.
  • --custom_val_dataset_path: 默认值为[]. 该参数已废弃, 该参数已废弃. 请使用--val_dataset {dataset_path}.
  • --self_cognition_sample: 自我认知数据集的采样数. 默认为0. 你该值设置为>0时, 需要同时指定--model_name, --model_author. 该参数已废弃, 请使用--dataset self-cognition#{self_cognition_sample}.
  • --🔥model_name: 默认为[None, None]. 如果开启了自我认知数据集的采样(即指定--dataset self-cognition或者self_cognition_sample>0), 你需要传入两个值, 分别代表模型的中文名和英文名. 例如: --model_name 小黄 'Xiao Huang'. 如果你想了解更多, 可以查看自我认知微调最佳实践.
  • --🔥model_author: 默认为[None, None]. 如果开启了自我认知数据集的采样, 你需要传入两个值, 分别代表作者的中文名和英文名. 例如: --model_author 魔搭 ModelScope.
  • --quant_method: 量化方法, 默认为None. 你可以选择为'bnb', 'hqq', 'eetq'.
  • --quantization_bit: 用于指定是否进行量化和量化的bit数, 默认为0, 即不进行量化. 如果要使用4bit qlora, 你需要设置--sft_type lora --quantization_bit 4
  • --hqq_axis: hqq量化参数,表示执行分组的所沿的轴,默认为0, 可选值包括0,1
  • --hqq_dynamic_config_path: hqq本地配置路径,支持对模型不同层配置不同的量化配置,参考
  • --bnb_4bit_comp_dtype: 在进行4bit量化时, 我们需要在模型的forward和backward时, 将其进行反量化. 该参数用于指定反量化后的torch_dtype. 默认为'AUTO', 即与dtype保持一致. 可选择的值包括: 'fp16', 'bf16', 'fp32'. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_quant_type: 4bit量化时的量化方式, 默认是'nf4'. 可选择的值包括: 'nf4', 'fp4'. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_use_double_quant: 是否在4bit量化时开启double量化, 默认为True. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_quant_storage: 默认值为None. 量化参数的存储类型. 若quantization_bit设置为0, 则该参数失效.
  • --🔥target_modules: 指定lora模块, 默认为['DEFAULT']. 如果target_modules传入'DEFAULT' or 'AUTO', 则根据model_type查找MODEL_MAPPING中的target_modules(LLM默认指定为qkv, MLLM默认为llm和projector中所有的linear). 如果传入'ALL', 则将所有的Linear层(不含head)指定为lora模块. 如果传入'EMBEDDING', 则Embedding层指定为lora模块. 如果内存允许, 建议设置成'ALL'. 当然, 你也可以设置['ALL', 'EMBEDDING'], 将所有的Linear和embedding层指定为lora模块. 该参数在使用lora/vera/boft/ia3/adalora/fourierft时生效.
  • --target_regex: 指定lora模块的regex表达式, Optional[str]类型. 默认为None, 如果该值传入, 则target_modules不生效.该参数在使用lora/vera/boft/ia3/adalora/fourierft时生效.
  • --🔥lora_rank: 默认为8. 只有当sft_type指定为'lora'时才生效.
  • --🔥lora_alpha: 默认为32. 只有当sft_type指定为'lora'时才生效.
  • --lora_dropout: 默认为0.05, 只有当sft_type指定为'lora'时才生效.
  • --init_lora_weights: 初始化LoRA weights的方法, 可以指定为true, false, guassian, pissa, pissa_niter_[number of iters], 默认值true.
  • --lora_bias_trainable: 默认为'none', 可以选择的值: 'none', 'all'. 如果你要将bias全都设置为可训练, 你可以设置为'all'.
  • --modules_to_save: 默认为[]. 如果你想要训练embedding, lm_head, 或者layer_norm, 你可以设置此参数, 例如: --modules_to_save EMBEDDING LN lm_head. 如果传入'EMBEDDING', 则将Embedding层添加到modules_to_save. 如果传入'LN', 则将RMSNormLayerNorm添加到modules_to_save.该参数在使用lora/vera/boft/ia3/adalora/fourierft时生效.
  • --lora_dtype: 默认为'AUTO', 指定lora模块的dtype类型. 如果是AUTO则跟随原始模块的dtype类型. 你可以选择的值: 'fp16', 'bf16', 'fp32', 'AUTO'.
  • --use_dora: 默认为False, 是否使用DoRA.
  • --use_rslora: 默认为False, 是否使用RS-LoRA.
  • --neftune_noise_alpha: NEFTune添加的噪声系数, 可以提升模型在指令微调中的性能, 默认为None. 通常可以设置为5, 10, 15. 你可以查看相关论文.
  • --neftune_backend: NEFTune的backend,支持transformersswift两种, 默认使用transformers库.
  • --🔥gradient_checkpointing: 是否开启gradient checkpointing, 默认为True. 该参数可以用于节约显存, 虽然这会略微降低训练速度. 该参数在max_length较大, batch_size较大时作用显著.
  • --🔥deepspeed: 用于指定deepspeed的配置文件的路径或者直接传入json格式的配置信息, 默认为None, 即不开启deepspeed. deepspeed可以节约显存. 我们书写了默认的ZeRO-2配置文件, ZeRO-3配置文件, ZeRO-2 Offload配置文件ZeRO-3 Offload配置文件. 你只需要指定'default-zero2', 'default-zero3', 'zero2-offload', 'zero3-offload'即可.
  • --batch_size: 训练时的batch_size, 默认为1. 增大batch_size可以增加GPU的利用率, 但不一定会增加训练速度, 因为在一个batch中, 需要对较短的句子按该batch中最长句子的长度进行padding, 从而引入无效的计算量.
  • --eval_batch_size: 评估时的batch_size, 默认为None, 即当predict_with_generate为True时, 设置为1, 为False时, 设置为batch_size.
  • --🔥num_train_epochs: 训练的epoch数, 默认为1. 如果max_steps >= 0, 则覆盖num_train_epochs. 你可以设置为3, 5, 10等.
  • --max_steps: 训练的max_steps数, 默认为-1. 如果max_steps >= 0, 则覆盖num_train_epochs.
  • --optim: 默认为'adamw_torch'.
  • --adam_beta1: 默认为0.9.
  • --adam_beta2: 默认为0.95.
  • --adam_epsilon: 默认为1e-8.
  • --🔥learning_rate: 默认值为None, 即如果sft_type为lora, 则设置为1e-4, 如果sft_type为full, 则设置为1e-5.
  • --weight_decay: 默认值为0.1.
  • --🔥gradient_accumulation_steps: 梯度累加, 默认值为None, 设置为math.ceil(16 / self.batch_size / world_size). total_batch_size = batch_size * gradient_accumulation_steps * world_size.
  • --max_grad_norm: 梯度裁剪, 默认值为1.
  • --predict_with_generate: 评估时是否使用生成式的方式, 默认为False. 如果设置为False, 则使用loss进行评估. 如果设置为True, 则使用ROUGE-L等指标进行评估. 使用生成式评估耗费的时间很长, 请谨慎选择.
  • --lr_scheduler_type: 默认值为'cosine', 你可以选择: 'linear', 'cosine', 'constant'等.
  • --warmup_ratio: warmup占用总的训练steps的比例, 默认为0.05.
  • --warmup_steps: warmup的步数, 默认为0. 如果设置warmup_steps>0, 则覆盖warmup_ratio.
  • --🔥eval_steps: 每训练多少steps进行评估, 默认为50.
  • --save_steps: 每训练多少个steps进行保存, 默认为None, 即设置为eval_steps.
  • --🔥save_only_model: 是否只保存模型参数, 而不存储断点续训所需的中间状态, 默认为False.
  • --save_total_limit: 保存的checkpoint的数量, 默认为2, 即保存best和last的checkpoint. 如果设置为-1, 则保存所有的checkpoint.
  • --logging_steps: 每训练多少步打印训练信息(e.g. loss, learning_rate等), 默认为5.
  • --dataloader_num_workers: 默认值为None, 如果是windows机器, 则设置为0, 否则设置为1.
  • --push_to_hub: 是否将训练的checkpoint同步推送到ModelScope Hub中, 默认为False.
  • --hub_model_id: 推送到的ModelScope Hub的model_id, 默认为None, 即设置为f'{model_type}-{sft_type}'. 你可以将其设置为model_id, 也可以设置为repo_name. 我们会根据hub_token推断出user_name. 推送的远程仓库如果不存在, 则会创建一个新的仓库, 如果存在, 则复用之前的仓库. 该参数只有在push_to_hub设置为True时才生效.
  • --hub_token: 推送时需要的SDK token. 可以从https://modelscope.cn/my/myaccesstoken获取, 默认为None, 即从环境变量MODELSCOPE_API_TOKEN中获取. 该参数只有在push_to_hub设置为True时才生效.
  • --hub_private_repo: 推送的ModelScope Hub中的模型仓库的权限是否设置为私有, 默认为False. 该参数只有在push_to_hub设置为True时才生效.
  • --hub_strategy: 推送策略, 默认为'every_save'. 可选择的值包括: 'end', 'every_save', 'checkpoint', 'all_checkpoints'. 该参数从transformers透传而来, 只有在push_to_hub设置为True时才生效.
  • --test_oom_error: 用于检测训练是否会发生OOM, 默认为False. 如果设置为True, 则会将训练集按max_length倒序进行排列, 方便OOM的测试. 该参数一般用于测试, 请谨慎设置.
  • --disable_tqdm: 是否不启用tqdm, 这在nohup启动脚本时很有用. 默认为False, 即为启动tqdm.
  • --🔥lazy_tokenize: 如果设置为False, 则在trainer.train()之前提前对所有文本进行预处理. 如果设置为True, 则延迟对文本进行编码, 减少预处理的等待并减少内存占用, 这在处理大数据集时很有用. 默认为None, 即我们会根据template的类型进行智能选择, LLM的模型通常设置为False, 多模态的模型通常设置为True(避免图片和音频加载导致过多的内存占用).
  • --🔥preprocess_num_proc: 在对数据集预处理时(对文本进行tokenize), 使用多进程. 默认为1. 与lazy_tokenize命令行参数一样, 用于解决预处理速度慢的问题. 但该策略无法减少内存占用, 所以如果当数据集巨大时, 建议使用lazy_tokenize. 推荐设置的值: 4, 8.
  • --🔥use_flash_attn: 是否使用flash attn, 默认为None. 安装flash_attn的步骤可以查看https://github.com/Dao-AILab/flash-attention. 支持flash_attn的模型可以查看LLM支持的模型.
  • --ignore_args_error: 是否忽略命令行传参错误抛出的Error, 默认为False. 如果需要拷贝代码到notebook中运行, 需要设置成True.
  • --🔥check_model_is_latest: 检查模型是否是最新, 默认为True. 如果你需要断网进行训练, 请将该参数设置为False.
  • --logging_dir: 默认为None. 即设置为f'{self.output_dir}/runs', 表示tensorboard文件存储路径.
  • --report_to: 默认为['tensorboard']. 可以设置--report_to all来报告所有已安装的集成.
  • --acc_strategy: 默认为'token', 可选择的值包括: 'token', 'sentence'.
  • --save_on_each_node: 该参数在多机训练时生效, 默认为False.
  • --save_strategy: 保存checkpoint的策略, 默认为'steps', 可选择的值包括: 'steps', 'epoch', 'no'.
  • --evaluation_strategy: 交叉验证策略, 默认为'steps', 可选择的值包括: 'steps', 'epoch', 'no'.
  • --save_safetensors: 默认为True.
  • --include_num_input_tokens_seen: 默认为False. 跟踪整个训练过程中观察到的输入tokens的数量.
  • --max_new_tokens: 默认为2048. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --do_sample: 参考文档: https://huggingface.co/docs/transformers/main_classes/text_generation. 默认为None, 继承模型的generation_config. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --temperature: 默认为None, 继承模型的generation_config. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --top_k: 默认为None, 继承模型的generation_config. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --top_p: 默认为None, 继承模型的generation_config. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --repetition_penalty: 默认为None, 继承模型的generation_config. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --num_beams: 默认为1. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --gpu_memory_fraction: 默认为None. 该参数旨在指定显卡最大可用显存比例的情况下运行训练,用于极限测试.
  • --train_dataset_mix_ratio: 默认为0.. 该参数定义了如何进行数据集打混训练. 指定该参数时, 会混合训练集的train_dataset_mix_ratio倍数的train_dataset_mix_ds指定的通用知识数据集. 该参数已废弃, 请使用--dataset进行数据集混合.
  • --train_dataset_mix_ds: 默认为['ms-bench']. 用于防止知识遗忘的通用知识数据集. 该参数已废弃, 请使用--dataset进行数据集混合.
  • --use_loss_scale: 默认为False. 生效时会将Agent的部分字段(Action/Action Input部分)的loss权重加强以强化CoT, 对普通SFT场景没有任何效果.
  • --loss_scale_config_path 选项指定自定义的 loss_scale 配置,适用于在启用 use_loss_scale 时,例如在 Agent 训练中放大 Action 和其他关键 ReAct 字段的损失权重。
    • 在配置文件中,您可以使用字典格式来设置 loss_scale。每个键代表一个特定字段名,其关联的值设定了该字段及其后续内容的损失缩放倍数。例如,通过设定 "Observation:": [2, 0],当response包含 xxxx Observation:error 时,Observation: 字段loss将增加到两倍,error 部分的loss则不计入。除了字面匹配,配置也支持正则表达式规则,以实现更灵活的匹配,如模式 '<.*?>':[2.0] 将针对所有尖括号括起来的部分损失增加到两倍。字段匹配与正则匹配所对应的损失缩放倍数,分别由长度为2和1的列表表示。
    • 同时支持匹配query对整段response设置loss_scale, 这在处理像Agent-FLAN论文中描述的固定多轮对话查询时极其有用,如果query中包含了预定义键的任一项,相应的响应将采用关联的 loss_scale 值。,你可以参考swift/llm/agent/agentflan.json
    • 默认情况下,我们为 Action:, Action Input:, Thought:, Final Answer:, 和 Observation: 等字段预设了损失缩放值。我们为alpha-umiAgent-FLAN也提供了默认配置,你可以设置为alpha-umiagent-flan来使用。默认的配置文件位于swift/llm/agent
    • 匹配规则的应用优先级,从高到低为:query字段 > response特定字段 > 正则表达式匹配规则。
  • --custom_register_path: 默认为None. 传入.py文件, 用于注册模板、模型和数据集.
  • --custom_dataset_info: 默认为None, 传入外置dataset_info.json的路径、json字符串或者dict. 用于拓展数据集. 格式参考: https://github.com/modelscope/swift/blob/main/swift/llm/data/dataset_info.json
  • --device_map_config: 手动配置模型的device_map, 默认为None. 你可以传入本地路径(.json), json字符串或者dict.
  • --device_max_memory: 每个设备device_map的最大可用显存, List, 默认为[], 传递的值数量必须和可见显卡数量相等. 比如10GB 10GB.

Long Context

  • --rope_scaling: 默认值None, 支持lineardynamic两种scaling方式.当max_length超过max_position_embeddings时使用.
  • --rescale_image: 是否对输入image进行rescale, 值为目标像素数, 例如480000(width * height), 所有大于此像素的图片会按照原始长宽比被缩放到这个值. 注意:并不是所有多模态模型都可以从这个参数中获益。

FSDP参数

  • --fsdp: 默认值'', fsdp类型, 详情可以查看该参数原始文档.
  • --fsdp_config: 默认值None, fsdp配置文件的路径.

Sequence Parallel参数

  • --sequence_parallel_size: 默认值1, 大于1时可以拆分一个sequence到多张显卡上以节省显存, 值需要设置为能被DDP数量整除

FourierFt 参数

FourierFt使用target_modules, target_regex, modules_to_save三个参数.

  • --fourier_n_frequency: 傅里叶变换的频率数量, int类型, 类似于LoRA中的r. 默认值2000.
  • --fourier_scaling: W矩阵的缩放值, float类型, 类似LoRA中的lora_alpha. 默认值300.0.

BOFT参数

BOFT使用target_modules, target_regex, modules_to_save三个参数.

  • --boft_block_size: BOFT块尺寸, 默认值4.
  • --boft_block_num: BOFT块数量, 不能和boft_block_size同时使用.
  • --boft_dropout: boft的dropout值, 默认0.0.

Vera参数

Vera使用target_modules, target_regex, modules_to_save三个参数.

  • --vera_rank: Vera Attention的尺寸, 默认值256.
  • --vera_projection_prng_key: 是否存储Vera映射矩阵, 默认为True.
  • --vera_dropout: Vera的dropout值, 默认0.0.
  • --vera_d_initial: Vera的d矩阵的初始值, 默认0.1.

LoRA+微调参数

  • --lora_lr_ratio: 默认值None, 建议值10~16, 使用lora时指定该参数即可使用lora+.

GaLore微调参数

  • --use_galore: bool : 默认值False, 是否使用GaLore.
  • --galore_target_modules: Union[str, List[str]] : 默认值None, 不传的情况下对attention和mlp应用GaLore.
  • --galore_rank: int : 默认值128, GaLore的rank值.
  • --galore_update_proj_gap: int : 默认值50, 分解矩阵的更新间隔.
  • --galore_scale: int : 默认值1.0, 矩阵权重系数.
  • --galore_proj_type: str : 默认值std, GaLore矩阵分解类型.
  • --galore_optim_per_parameter: bool : 默认值False, 是否给每个Galore目标Parameter设定一个单独的optimizer.
  • --galore_with_embedding: bool : 默认值False, 是否对embedding应用GaLore.
  • --galore_quantization 是否使用q-galore. 默认值False.
  • --galore_proj_quant: 是否对SVD分解矩阵做量化, 默认False.
  • --galore_proj_bits: SVD量化bit数.
  • --galore_proj_group_size: SVD量化分组数.
  • --galore_cos_threshold: 投影矩阵更新的cos相似度阈值. 默认值0.4.
  • --galore_gamma_proj: 在投影矩阵逐渐相似后会拉长更新间隔, 本参数为每次拉长间隔的系数, 默认值2.
  • --galore_queue_size: 计算投影矩阵相似度的队列长度, 默认值5.

LISA微调参数

注意:LISA仅支持全参数,即--sft_type full.

  • --lisa_activated_layers: 默认值0, 代表不使用LISA,改为非0代表需要激活的layers个数,建议设置为2或8.
  • --lisa_step_interval: 默认值20, 多少iter切换可反向传播的layers.

UNSLOTH微调参数

unsloth无新增参数,对已有参数进行调节即可支持:

--tuner_backend unsloth
--sft_type full/lora
--quantization_type 4

LLAMAPRO微调参数

  • --llamapro_num_new_blocks: 默认值4, 插入的新layers总数.
  • --llamapro_num_groups: 默认值None, 分为多少组插入new_blocks, 如果为None则等于llamapro_num_new_blocks, 即每个新的layer单独插入原模型.

AdaLoRA微调参数

以下参数sft_type设置为adalora时生效. adalora的target_modules等参数继承于lora的对应参数, 但lora_dtype参数不生效.

  • --adalora_target_r: 默认值8, adalora的平均rank.
  • --adalora_init_r: 默认值12, adalora的初始rank.
  • --adalora_tinit: 默认值0, adalora的初始warmup.
  • --adalora_tfinal: 默认值0, adalora的final warmup.
  • --adalora_deltaT: 默认值1, adalora的step间隔.
  • --adalora_beta1: 默认值0.85, adalora的EMA参数.
  • --adalora_beta2: 默认值0.85, adalora的EMA参数.
  • --adalora_orth_reg_weight: 默认值0.5, adalora的正则化参数.

IA3微调参数

IA3使用target_modules, target_regex, modules_to_save三个参数.

以下参数sft_type设置为ia3时生效.

  • --ia3_feedforward_modules: 指定IA3的MLP的Linear名称, 该名称必须在ia3_target_modules中.

ReFT微调参数

以下参数sft_type设置为reft时生效.

  1. ReFT无法合并tuner
  2. ReFT和gradient_checkpointing不兼容
  3. 如果使用DeepSpeed遇到问题请暂时卸载DeepSpeed
  • --reft_layers: ReFT应用于哪些层上, 默认为None, 代表所有层, 可以输入层号的list, 例如--reft_layers 1 2 3 4
  • --reft_rank: ReFT矩阵的rank, 默认为4.
  • --reft_intervention_type: ReFT的类型, 支持'NoreftIntervention', 'LoreftIntervention', 'ConsreftIntervention', 'LobireftIntervention', 'DireftIntervention', 'NodireftIntervention', 默认为LoreftIntervention.
  • --reft_args: ReFT Intervention中的其他支持参数, 以json-string格式输入.

Liger微调参数

  • --use_liger: 使用liger-kernel进行训练.

PT 参数

PT参数继承了sft参数,并修改了部分默认值.

  • --sft_type: 默认值为'full'.
  • --target_modules: 默认值为'ALL'.
  • --lazy_tokenize: 默认值为True.
  • --eval_steps: 默认值为500.

RLHF 参数

RLHF参数继承了sft参数, 除此之外增加了以下参数:

  • --🔥rlhf_type: 选择对齐算法,可选项为'dpo', 'orpo', 'simpo', 'kto', 'cpo', 默认为'dpo'. 训练脚本请查看文档
  • --ref_model_type: 选择参考模型, 同model_type参数, 默认为None, 与训练模型一致。其中cpo, simpo, orpo算法无需选择。通常不需要设置。
  • --ref_model_id_or_path: 参考模型的本地cache路径, 默认为None.
  • --ref_model_revision: 参考模型版本, 同model_revision参数, 默认为None, 与训练模型一致。通常不需要设置。
  • --beta: KL正则项系数, 默认为None, 即simpo算法默认为2., 其他算法默认为0.1. 具体参考文档
  • --label_smoothing: 是否使用DPO smoothing, 默认值为0,一般设置在0~0.5之间.
  • --loss_type: loss类型, 默认为None, 如果是dpo, cpo则为sigmoid, 如果是simpo则为simpo.

DPO参数

  • --🔥rpo_alpha: 控制DPO中加入sft_loss的权重, 默认为1. 最后的loss为KL_loss + rpo_alpha * sft_loss.

CPO/SimPO参数

  • --cpo_alpha: CPO/SimPO loss 中 nll loss的系数, 默认为1..
  • --simpo_gamma: SimPO算法中的reward margin项,论文中建议设置为0.5-1.5, 默认为1.

KTO参数

  • --desirable_weight: KTO算法中对desirable response的loss权重 $\lambda_D$ ,默认为1.
  • --undesirable_weight: KTO论文中对undesirable response的loss权重 $\lambda_U$ , 默认为1.. 分别用$n_d$ 和$n_u$ 表示数据集中desirable examples和undesirable examples的数量,论文中推荐控制 $\frac{\lambda_D n_D}{\lambda_Un_U} \in [1,\frac{4}{3}]$

PPO参数

  • --reward_model_id_or_path : 奖励模型的本地cache路径, 需要包含value_head的权重(value_head.safetensorsvalue_head.bin)
  • --reward_model_type: 奖励模型类型, 同model_type参数
  • --reward_model_revision: 奖励模型版本, 同model_revision参数
  • --local_rollout_forward_batch_size: 每次数据采样的批量大小, 默认为64
  • --whiten_rewards: 对奖励进行归一化处理, 默认为False
  • --kl_coef: KL散度项的系数, 默认为0.05
  • --cliprange: PPO策略损失函数中的clip范围, 默认为0.2
  • --vf_coef: 价值损失函数系数, 默认为0.1
  • --cliprange_value: PPO价值损失函数中的clip范围, 默认为0.2
  • --gamma: 累计奖励的折扣因子, 默认为1.0
  • --lam: GAE中的lambda系数, 默认为0.95

infer merge-lora 参数

  • --🔥model_type: 默认值为None, 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥model_id_or_path: 默认值为None, 具体的参数介绍可以在sft命令行参数中查看. 推荐使用model_type的方式指定.
  • --model_revision: 默认值为None. 具体的参数介绍可以在sft命令行参数中查看. 如果model_id_or_path为None或者是本地的模型目录, 则该参数失效.
  • --🔥sft_type: 默认值为'lora', 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥template_type: 默认值为'AUTO', 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥infer_backend: 你可以选择'AUTO', 'vllm', 'pt'. 默认使用'AUTO', 进行智能选择, 即如果没有传入ckpt_dir或使用全参数微调, 并且安装了vllm且模型支持vllm则使用vllm引擎, 否则使用原生torch进行推理. vllm环境准备可以参考VLLM推理加速与部署, vllm支持的模型可以查看支持的模型.
  • --🔥ckpt_dir: 必填项, 值为SFT阶段保存的checkpoint路径, e.g. '/path/to/your/vx-xxx/checkpoint-xxx'.
  • --load_args_from_ckpt_dir: 是否从ckpt_dirsft_args.json文件中读取模型配置信息. 默认是True.
  • --🔥load_dataset_config: 该参数只有在--load_args_from_ckpt_dir true时才生效. 即是否从ckpt_dirsft_args.json文件中读取数据集相关的配置信息. 默认为False.
  • --eval_human: 使用数据集中的验证集部分进行评估还是使用人工的方式评估. 默认值为None, 进行智能选择, 如果没有任何数据集(含自定义数据集)传入, 则会使用人工评估的方式. 如果有数据集传入, 则会使用数据集方式评估.
  • --device_map_config: 默认值为None, 具体的参数介绍可以在sft命令行参数中查看.
  • --device_max_memory: 默认值为[], 具体的参数介绍可以在sft命令行参数中查看.
  • --seed: 默认值为42, 具体的参数介绍可以在sft命令行参数中查看.
  • --dtype: 默认值为'AUTO, 具体的参数介绍可以在sft命令行参数中查看.
  • --model_kwargs: 默认值为'None, 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥dataset: 默认值为[], 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥val_dataset: 默认为[], 具体的参数介绍可以在sft命令行参数中查看.
  • --dataset_seed: 默认值为None, 具体的参数介绍可以在sft命令行参数中查看.
  • --dataset_test_ratio: 默认值为0.01. 具体的参数介绍可以在sft命令行参数中查看.
  • --🔥show_dataset_sample: 表示想要评估和展示的验证集的数量, 默认值为-1.
  • --system: 默认值为None. 具体的参数介绍可以在sft命令行参数中查看.
  • --tools_prompt: 默认值为react_en. 具体的参数介绍可以在sft命令行参数中查看.
  • --max_length: 默认值为-1. 具体的参数介绍可以在sft命令行参数中查看.
  • --truncation_strategy: 默认是'delete'. 具体的参数介绍可以在sft命令行参数中查看.
  • --check_dataset_strategy: 默认值为'none', 具体的参数介绍可以在sft命令行参数中查看.
  • --custom_train_dataset_path: 默认值为[]. 该参数已废弃, 请使用--dataset {dataset_path}.
  • --custom_val_dataset_path: 默认值为[]. 该参数已废弃. 请使用--val_dataset {dataset_path}.
  • --quantization_bit: 默认值为0. 具体的参数介绍可以在sft命令行参数中查看.
  • --quant_method: 量化方法, 默认为None. 你可以选择为'bnb', 'hqq', 'eetq'.
  • --hqq_axis: hqq量化参数,表示执行分组的所沿的轴,默认为0, 可选值包括0,1
  • --hqq_dynamic_config_path: hqq本地配置路径,支持对模型不同层配置不同的量化配置,参考
  • --bnb_4bit_comp_dtype: 默认值为'AUTO'. 具体的参数介绍可以在sft命令行参数中查看. 若quantization_bit设置为0, 则该参数失效.
  • --bnb_4bit_quant_type: 默认值为'nf4'. 具体的参数介绍可以在sft命令行参数中查看. 若quantization_bit设置为0, 则该参数失效.
  • --bnb_4bit_use_double_quant: 默认值为True. 具体的参数介绍可以在sft命令行参数中查看. 若quantization_bit设置为0, 则该参数失效.
  • --bnb_4bit_quant_storage: 默认值为True. 具体的参数介绍可以在sft命令行参数中查看. 若quantization_bit设置为0, 则该参数失效.
  • --🔥max_new_tokens: 生成新token的最大数量, 默认值为2048. 如果使用部署, 请通过在客户端传入max_tokens来控制最大生成的tokens数.
  • --🔥do_sample: 参考文档: https://huggingface.co/docs/transformers/main_classes/text_generation. 默认值为None, 继承模型的generation_config.
  • --temperature: 默认值为None, 继承模型的generation_config. 该参数只有在do_sample设置为True时才生效. 该参数会在部署参数中作为默认值使用.
  • --top_k: 默认值为None, 继承模型的generation_config. 该参数只有在do_sample设置为True时才生效. 该参数会在部署参数中作为默认值使用.
  • --top_p: 默认值为None, 继承模型的generation_config. 该参数只有在do_sample设置为True时才生效. 该参数会在部署参数中作为默认值使用.
  • --repetition_penalty: 默认值为None, 继承模型的generation_config. 该参数会在部署参数中作为默认值使用.
  • --num_beams: 默认为1.
  • --use_flash_attn: 默认值为None, 即为'auto'. 具体的参数介绍可以在sft命令行参数中查看.
  • --ignore_args_error: 默认值为False, 具体的参数介绍可以在sft命令行参数中查看.
  • --stream: 是否使用流式输出, 默认为True. 该参数只有在使用数据集评估并且verbose为True时才生效.
  • --🔥merge_lora: 是否将lora权重merge到基模型中, 并保存完整的权重, 默认为False. 权重会保存在ckpt_dir的同级目录中, e.g. '/path/to/your/vx-xxx/checkpoint-xxx-merged'目录下.
  • --merge_device_map: merge-lora时使用的device_map, 默认为None, 为减少显存占用, 在仅有merge-lora过程时使用auto,其他情况默认使用cpu.
  • --save_safetensors: 保存成safetensors文件还是bin文件. 默认为True.
  • --overwrite_generation_config: 是否将评估所使用的generation_config保存成generation_config.json文件, 默认为False.
  • --🔥verbose: 如果设置为False, 则使用tqdm样式推理. 如果设置为True, 则输出推理的query, response, label. 默认为None, 进行自动选择, 即len(val_dataset) >= 100时, 设置为False, 否则设置为True. 该参数只有在使用数据集评估时生效.
  • --lora_modules: 默认为[], 输入的格式为'{lora_name}={lora_path}', e.g. --lora_modules lora_name1=lora_path1 lora_name2=lora_path2. ckpt_dir会以f'default-lora={args.ckpt_dir}'的形式加入args.lora_modules.
  • --custom_register_path: 默认为None. 传入.py文件, 用于注册模板、模型和数据集.
  • --custom_dataset_info: 默认为None, 传入外置dataset_info.json的路径、json字符串或者dict. 用于拓展数据集.
  • --rope_scaling: 默认值None, 支持lineardynamic两种scaling方式, 当max_length超过max_position_embeddings时使用. 需要同时指定--max_length参数.

vLLM 参数

参考文档: https://docs.vllm.ai/en/latest/models/engine_args.html

  • --🔥gpu_memory_utilization: 初始化vllm引擎EngineArgs的参数, 默认为0.9. 该参数只有在使用vllm时才生效. VLLM推理加速和部署可以查看VLLM推理加速与部署.
  • --🔥tensor_parallel_size: 初始化vllm引擎EngineArgs的参数, 默认为1. 该参数只有在使用vllm时才生效.
  • --max_num_seqs: 初始化vllm引擎EngineArgs的参数, 默认为256. 该参数只有在使用vllm时才生效.
  • --🔥max_model_len: 覆盖模型的max_model_len, 默认为None. 该参数只有在使用vllm时才生效.
  • --disable_custom_all_reduce: 是否禁用自定义的all-reduce kernel, 而回退到NCCL. 默认为True, 这与vLLM的默认值不同.
  • --enforce_eager: vllm使用pytorch eager模式还是建立cuda graph. 默认为False. 设置为True可以节约显存, 但会影响效率.
  • --limit_mm_per_prompt: 控制vllm使用多图, 默认为None. 例如传入--limit_mm_per_prompt '{"image": 10, "video": 5}'.
  • --vllm_enable_lora: 默认为False. 是否开启vllm对lora的支持. 具体可以查看VLLM & LoRA.
  • --vllm_max_lora_rank: 默认为16. vllm对于lora支持的参数.
  • --lora_modules: 已介绍.

lmdeploy 参数

参考文档: https://lmdeploy.readthedocs.io/en/latest/api/pipeline.html#turbomindengineconfig

  • --🔥tp: tensor并行, 用于初始化lmdeploy引擎的参数, 默认值为1.
  • --cache_max_entry_count: 初始化lmdeploy引擎的参数, 默认值为0.8.
  • --quant_policy: Key-Value Cache量化, 初始化lmdeploy引擎的参数, 默认值为0, 你可以设置为4, 8.
  • --vision_batch_size: 初始化lmdeploy引擎的参数, 默认值为1. 该参数只有在使用多模态模型时生效.

export 参数

export参数继承了infer参数, 除此之外增加了以下参数:

  • --to_peft_format: 默认为False. 将lora的swift format(--tuner_backend swift)转成peft format.
  • --🔥merge_lora: 默认为False. 该参数已在InferArguments中定义, 不属于新增参数. 是否将lora权重merge到基模型中, 并保存完整的权重. 权重会保存在ckpt_dir的同级目录中, e.g. '/path/to/your/vx-xxx/checkpoint-xxx-merged'目录下.
  • --🔥quant_bits: 量化的bits数. 默认为0, 即不进行量化. 如果你设置了--quant_method awq, 你可以设置为4进行4bits量化. 如果你设置了--quant_method gptq, 你可以设置为2,3,4,8进行对应bits的量化. 如果对原始模型进行量化, 权重会保存在f'{args.model_type}-{args.quant_method}-int{args.quant_bits}'目录中. 如果对微调后模型进行量化, 权重会保存在ckpt_dir的同级目录中, e.g. f'/path/to/your/vx-xxx/checkpoint-xxx-{args.quant_method}-int{args.quant_bits}'目录下.
  • --🔥quant_method: 量化方法, 默认为'awq'. 你可以选择为'awq', 'gptq', 'bnb'.
  • --🔥dataset: 该参数已在InferArguments中定义, 在export时含义为量化数据集. 默认为[]. 更多细节: 包括如何自定义量化数据集, 可以参考LLM量化与导出文档.
  • --quant_n_samples: 量化参数, 默认为256. 当设置为--quant_method awq时, 如果出现量化的时候OOM, 可以适度降低--quant_n_samples--quant_seqlen. --quant_method gptq通常不会出现量化OOM.
  • --quant_seqlen: 量化参数, 默认为2048.
  • --quant_batch_size: 量化数据集的batch_size,默认为1.
  • --quant_device_map: 默认为None. 你可以指定为'cuda:0', 'auto', 'cpu'等, 表示量化时模型导入的设备.
  • --quant_output_dir: 默认为None, 默认的quant_output_dir会被打印在命令行中.
  • --push_to_hub: 默认为False. 是否将最后的ckpt_dirpush到ModelScope Hub中. 如果你指定了merge_lora, 则将推送全量参数; 如果你还指定了quant_bits, 则将推送量化后的模型.
  • --hub_model_id: 默认为None. 推送到的ModelScope Hub的model_id. 如果push_to_hub设置为True, 该参数必须被设置.
  • --hub_token: 默认为None. 具体的参数介绍可以在sft命令行参数中查看.
  • --hub_private_repo: 默认为False. 具体的参数介绍可以在sft命令行参数中查看.
  • --commit_message: 默认是'update files'.
  • --to_ollama: 转为ollama导出.
  • --ollama_output_dir: ollama输出目录. 默认存储在当前目录下的模型类型-ollama文件夹内.

eval参数

eval参数继承了infer参数,除此之外增加了以下参数:(注意: infer中的generation_config参数将失效, 由evalscope控制.)

  • --🔥eval_dataset: 评测的官方数据集, 默认值为空, 代表全量评测, 注意指定了custom_eval_config时本参数不生效. 查看所有支持的评测集.
  • --eval_few_shot: 每个评测集的子数据集的few-shot个数, 默认为None, 即使用数据集的默认配置. 本参数暂时废弃
  • --eval_limit: 每个评测集的子数据集的采样数量, 默认为None代表全量评测. 可以传入整数, 表示每个数据集的评测数量, 也可以传入string, 如[10:20], 代表切片.
  • --name: 用于区分相同配置评估的结果存储路径. 如: {eval_output_dir}/{name}, 默认在:eval_outputs/defaults, 其内部存在以时间命名的文件夹来承载每次评测结果.
  • --eval_url: OpenAI标准的模型调用接口, 例如http://127.0.0.1:8000/v1. 如果使用部署的方式评估, 则需要进行设置, 通常不需要设置. 默认为None.
    swift eval --eval_url http://127.0.0.1:8000/v1 --eval_is_chat_model true --model_type gpt4 --eval_token xxx
  • --eval_token: OpenAI标准的模型调用接口的token, 默认为'EMPTY', 代表没有token.
  • --eval_is_chat_model: 如果eval_url不为空, 则需要传入本值判断是否为chat模型, False代表为base模型. 默认为None.
  • --custom_eval_config: 使用自定义数据集进行评测, 需要是一个本地存在的文件路径, 文件格式详见自定义评测集. 默认为None.
  • --eval_use_cache: 是否使用已经生成的评测缓存, 使做过的评测不会重新运行而只是重新生成评测结果. 默认False.
  • --eval_output_dir: 评测结果输出路径, 默认是当前文件夹下的eval_outputs路径.
  • --eval_batch_size: 评测的输入batch_size, 默认是8
  • --eval_nproc: 并发数, 更大的并发数可以更快评测, 但显存占用也更高, 默认值16. 本参数仅对多模态评测生效.
  • --deploy_timeout: 评测之前会启动模型部署, 该参数设置部署的等待超时时长, 默认值为1800, 代表30分钟.

app-ui 参数

app-ui参数继承了infer参数, 除此之外增加了以下参数:

  • --host: 默认为'127.0.0.1'. 传递给gradio的demo.queue().launch(...)函数.
  • --port: 默认为7860. 传递给gradio的demo.queue().launch(...)函数.
  • --share: 默认为False. 传递给gradio的demo.queue().launch(...)函数.

deploy 参数

deploy参数继承了infer参数, 除此之外增加了以下参数:

  • --host: 默认为'0.0.0.0'.
  • --port: 默认为8000.
  • --api_key: 默认为None, 即不对请求进行api_key验证.
  • --ssl_keyfile: 默认为None.
  • --ssl_certfile: 默认为None.
  • --verbose: 是否对请求内容进行打印, 默认为True.
  • --log_interval: 对统计信息进行打印的间隔, 单位为秒. 默认为10. 如果设置为0, 表示不打印统计信息.

web-ui 参数

  • --🔥host: 默认为'127.0.0.1'. 要使其在非本机上可访问, 可设置为'0.0.0.0'.
  • --port: 默认为7860.
  • --lang: 默认为'zh'.
  • --share: 默认为False.