forked from vansky/neural-complexity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
101 lines (88 loc) · 3.99 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Generates sentences by sampling from a language model
"""
import argparse
import torch
import data
parser = argparse.ArgumentParser(description='PyTorch Language Model')
# Model parameters.
parser.add_argument('--data_dir', type=str, default='./data/wikitext-2',
help='location of the data corpus')
parser.add_argument('--model_file', type=str, default='./model.pt',
help='model checkpoint to use')
parser.add_argument('--outf', type=str, default='generated.txt',
help='output file for generated text')
parser.add_argument('--numwords', type=int, default='1000',
help='number of words to generate')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--sentences', action='store_true',
help='generate one sentence per line')
parser.add_argument('--single', action='store_true',
help='use only a single GPU (even if more are available)')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature - higher will increase diversity')
parser.add_argument('--log_interval', type=int, default=100,
help='reporting interval')
parser.add_argument('--vocab_file', type=str, default='vocab.txt',
help='path to save the LM data')
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
if args.temperature < 1e-3:
parser.error("--temperature has to be greater or equal 1e-3")
with open(args.model_file, 'rb') as f:
if args.cuda:
model = torch.load(f).to(device)
else:
model = torch.load(f, map_location='cpu')
# after load the rnn params are not a continuous chunk of memory
# this makes them a continuous chunk, and will speed up forward pass
if args.cuda and (not args.single) and (torch.cuda.device_count() > 1):
model.module.rnn.flatten_parameters()
else:
if isinstance(model, torch.nn.DataParallel):
model = model.module
model.rnn.flatten_parameters()
model.eval()
corpus = data.SentenceCorpus(args.data_dir, args.vocab_file, generate_flag=True)
ntokens = len(corpus.dictionary)
if args.cuda and (not args.single) and (torch.cuda.device_count() > 1):
hidden = model.module.init_hidden(1)
else:
hidden = model.init_hidden(1)
input_sequence = torch.rand(1, 1).mul(ntokens).long()
if args.cuda:
input_sequence.data = input_sequence.data.to(device)
with open(args.outf, 'w') as outf:
for i in range(args.numwords):
output, hidden = model(input_sequence, hidden)
word_weights = output.squeeze().data.div(args.temperature).exp().cpu()
word_idx = torch.multinomial(word_weights, 1)[0]
input_sequence.data.fill_(word_idx)
word = corpus.dictionary.idx2word[word_idx]
if args.sentences:
outf.write(word + ('\n' if word == '<eos>' else ' '))
else:
outf.write(word + ('\n' if i % 20 == 19 else ' '))
if i % args.log_interval == 0:
print('| Generated {}/{} words'.format(i, args.numwords))
if args.sentences:
while word != '<eos>':
output, hidden = model(input_sequence, hidden)
word_weights = output.squeeze().data.div(args.temperature).exp().cpu()
word_idx = torch.multinomial(word_weights, 1)[0]
input_sequence.data.fill_(word_idx)
word = corpus.dictionary.idx2word[word_idx]
if args.sentences:
outf.write(word + ('\n' if word == '<eos>' else ' '))
else:
outf.write(word + ('\n' if i % 20 == 19 else ' '))