-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsparsify.py
269 lines (232 loc) · 8.05 KB
/
sparsify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import time
import argparse
import h5py as h5
import numpy as np
import cupy as cp
from scipy.signal import savgol_filter
from cupyx.scipy.signal import fftconvolve
from wf_func import clip, spe, read_model, Thres, likelihoodt0
def lucyddm(waveform, spe_pre, gmu):
spe = cp.append(cp.zeros(len(spe_pre) - 1), cp.abs(spe_pre))
waveform = cp.clip(waveform, 1e-6, cp.inf)
spe = cp.clip(spe, 1e-6, cp.inf)[None, :]
waveform /= gmu
wave_deconv = waveform.copy()
spe_mirror = spe[:, ::-1]
for i in range(2000):
relative_blur = waveform / fftconvolve(wave_deconv, spe, mode="same", axes=1)
wave_deconv *= fftconvolve(relative_blur, spe_mirror, mode="same", axes=1)
return wave_deconv
def initial_params(wave, char, spe_pre, gmu, Thres, p, nsp=4, nstd=3, is_t0=False, is_delta=False):
hitt, char = clip(np.arange(len(wave)), char, Thres)
char = char / char.sum() * np.clip(np.abs(wave.sum()), 1e-6, np.inf)
tlist = np.unique(
np.clip(np.hstack(hitt[:, None] + np.arange(-nsp, nsp + 1)), 0, len(wave) - 1)
)
index_prom = np.hstack(
[
np.argwhere(savgol_filter(wave, 11, 4) > nstd * spe_pre["std"]).flatten(),
hitt,
]
)
left_wave = round(
np.clip(index_prom.min() - 3 * spe_pre["mar_l"], 0, len(wave) - 1)
)
right_wave = round(
np.clip(index_prom.max() + 3 * spe_pre["mar_r"], 0, len(wave) - 1)
)
wave = wave[left_wave:right_wave]
npe_init = np.zeros(len(tlist))
npe_init[np.isin(tlist, hitt)] = char / gmu
tlist = np.sort(tlist)
t_auto = np.arange(left_wave, right_wave)[:, None] - tlist
A = spe((t_auto + np.abs(t_auto)) / 2, p[0], p[1], p[2])
t0_init = None
t0_init_delta = None
if is_t0:
t0_init, t0_init_delta = likelihoodt0(hitt=hitt, char=char, gmu=gmu, Tau=Tau, Sigma=Sigma, mode='charge', is_delta=is_delta)
return A, wave, tlist, t0_init, t0_init_delta, npe_init, left_wave, right_wave
psr = argparse.ArgumentParser()
psr.add_argument("-o", dest="opt", type=str, help="output file")
psr.add_argument("ipt", type=str, help="input file")
psr.add_argument("--ref", type=str, help="reference file")
args = psr.parse_args()
fipt = args.ipt
fopt = args.opt
reference = args.ref
spe_pre = read_model(reference, 1)
with h5.File(fipt, "r", libver="latest", swmr=True) as ipt:
ent = ipt["Readout/Waveform"][:]
window = len(ent[0]["Waveform"])
assert window >= len(spe_pre[0]["spe"]), "Single PE too long which is {}".format(
len(spe_pre[0]["spe"])
)
Mu = ipt["Readout/Waveform"].attrs["mu"].item()
Tau = ipt["Readout/Waveform"].attrs["tau"].item()
Sigma = ipt["Readout/Waveform"].attrs["sigma"].item()
gmu = ipt["SimTriggerInfo/PEList"].attrs["gmu"].item()
gsigma = ipt["SimTriggerInfo/PEList"].attrs["gsigma"].item()
p = spe_pre[0]["parameters"]
std = 1.0
mix0sigma = 1e-3
mu0 = np.arange(1, int(Mu + 5 * np.sqrt(Mu)))
n_t = np.arange(1, 20)
ent = np.sort(ent, kind="stable", order=["TriggerNo", "ChannelID"])
Chnum = len(np.unique(ent["ChannelID"]))
d_tq = [("t_s", np.float32), ("q_s", np.float32), ("cq", np.float32)]
d_index = [
("loc", np.uint32),
("TriggerNo", np.uint32),
("ChannelID", np.uint32),
("mu0", np.float32),
("t0", np.float32),
("NPE", np.uint32),
("l_t", np.uint32),
("a_wave", np.uint32),
("b_wave", np.uint32),
("l_wave", np.uint32),
("mus", np.float32),
("sig2s", np.float32),
("sig2w", np.float32),
("consumption", np.float32),
]
t_l = []
q_l = []
cq_l = [] # cumulative q
a_w = []
b_w = []
mu_l = []
t0_l = []
NPE_l = []
mus_l = []
sig2s_l = []
sig2w_l = []
z_l = []
A_l = []
cx_l = []
s_l = []
consumption = []
cid = ent["ChannelID"]
assert np.all(cid == 0)
waves = ent["Waveform"].astype(np.float64) * spe_pre[0]["epulse"]
wave_deconv = lucyddm(cp.asarray(waves), cp.asarray(spe_pre[0]["spe"]), gmu)
n_wave = len(ent) # number of waveforms
for ie, (e, wave, char) in enumerate(zip(ent, waves, cp.asnumpy(wave_deconv))):
time_start = time.time()
eid = e["TriggerNo"]
cid = e["ChannelID"]
A, y, tlist, t0_t, t0_delta, cha, left_wave, right_wave = initial_params(
wave, char, spe_pre[cid], gmu, Thres["lucyddm"], p, is_t0=False
)
s_cha = np.cumsum(cha)
# moving average filter of size 2*n+1
cha = np.pad(s_cha[3:], (2, 1), "edge") - np.pad(s_cha[:-3], (2, 1), "edge")
cha += 1e-8 # for completeness of the random walk.
mu0 = abs(y.sum() / gmu)
NPE = round(mu0) # mu0: μ_total,LucyDDM 给出的 μ 猜测;NPE 是 PE 序列初值 s_0 的 PE 数。
# Eq. (9) where the columns of A are taken to be unit-norm.
mus = np.sqrt(np.diag(np.matmul(A.T, A))) # ~39
# elements of mus must be equal for continuous metropolis to function
assert np.std(mus) < 1e-6, "mus must be equal"
mus = mus[0]
A = A / mus
"""
A: basis dictionary
p1: prior probability for each bin.
sig2w: variance of white noise.
sig2s: variance of signal x_i.
mus: mean of signal x_i.
TRIALS: number of Metropolis steps.
"""
sig2w = spe_pre[cid]["std"] ** 2
sig2s = (mus * (gsigma / gmu)) ** 2 # ~94
# Only for multi-gaussian with arithmetic sequence of mu and sigma
l_wave, l_t = A.shape
# Eq. (29)
cx = A / sig2w
# mu = 0 => (y - A * mu -> z)
z = y
p_cha = cha / np.sum(cha)
# q_s: pdf of LucyDDM charge (由 charge 引导的 PE 强度流先验)
cq = np.cumsum(p_cha)
cq[0] = 0 # 第一位须置0,否则会外溢
cq[-1] = 1 # 最后置1,否则会外溢
# t 的初始位置,取值为 {0.5, 1.5, 2.5, ..., (NPE-0.5)} / NPE 的 InverseCDF
# MCMC 链的 PE configuration 初值 s0
s = np.interp((np.arange(NPE) + 0.5) / NPE, xp=cq, fp=np.arange(l_t))
# 直接算出 cx 和 z,防止大数相减积累误差。
frac, ti = np.modf(s)
ti = np.array(ti, np.int_)
A_vec = (1 - frac)[None, :] * A[:, ti] + frac[None, :] * A[:, ti + 1]
phi = A_vec @ A_vec.T * sig2s + np.eye(l_wave) * sig2w
phi_inv = np.linalg.inv(phi)
cx = phi_inv @ A
z -= np.sum(A_vec, axis=1) * mus
t_l.append(tlist)
q_l.append(p_cha)
cq_l.append(cq)
a_w.append(left_wave)
b_w.append(right_wave)
mu_l.append(mu0)
t0_l.append(t0_t)
NPE_l.append(NPE)
mus_l.append(mus)
sig2s_l.append(sig2s)
sig2w_l.append(sig2w)
z_l.append(z)
A_l.append(A)
cx_l.append(cx)
s_l.append(s)
consumption.append(time.time() - time_start)
A_shape = np.array([x.shape for x in A_l])
# lengths of waveform and tlist
l_wave, l_t = np.max(A_shape, axis=0)
mNPE = np.max(NPE_l)
opts = {"compression": "gzip", "shuffle": True}
A = np.zeros((n_wave, l_wave, l_t), np.float32)
z = np.zeros((n_wave, l_wave), np.float32)
cx = np.zeros((n_wave, l_wave, l_t), np.float32)
s = np.zeros((n_wave, mNPE), np.float32)
tq = np.zeros((n_wave, l_t), d_tq)
for loc, _lw, _lt, _npe, _t, _q, _cq, _z, _A, _cx, _s in zip(
range(n_wave),
A_shape[:, 0],
A_shape[:, 1],
NPE_l,
t_l,
q_l,
cq_l,
z_l,
A_l,
cx_l,
s_l,
):
tq["t_s"][loc, :_lt] = _t
tq["q_s"][loc, :_lt] = _q
tq["cq"][loc, :_lt] = _cq
z[loc, :_lw] = _z
A[loc, :_lw, :_lt] = _A
cx[loc, :_lw, :_lt] = _cx
s[loc, :_npe] = _s
with h5.File(fopt, "w") as opt:
opt.create_dataset("A", data=A, **opts)
opt.create_dataset("cx", data=cx, **opts)
opt.create_dataset("s", data=s, **opts)
opt.create_dataset("tq", data=tq, **opts)
opt.create_dataset("z", data=z, **opts)
index = opt.create_dataset("index", shape=(n_wave,), dtype=d_index, **opts)
index["loc"] = np.arange(n_wave, dtype=np.uint32)
index["TriggerNo"] = ent["TriggerNo"]
index["ChannelID"] = ent["ChannelID"]
index["mu0"] = mu_l
index["t0"] = np.array(t0_l).flatten()
index["NPE"] = NPE_l
index["mus"] = mus_l
index["sig2s"] = sig2s_l
index["sig2w"] = sig2w_l
index["a_wave"] = a_w
index["b_wave"] = b_w
index["l_wave"] = A_shape[:, 0]
index["l_t"] = A_shape[:, 1]
index["consumption"] = consumption
print(f"Sparsify finished, real time {np.sum(consumption):.02f}s")