diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_1.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_1.png
index 46caad7666..d03d1ca417 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_1.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_1.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_2.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_2.png
index 168c98c86d..5eee09cb74 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_2.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_2.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_3.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_3.png
index 7c34e54e3b..5d212fcfaf 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_13_3.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_13_3.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_17_0.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_17_0.png
new file mode 100644
index 0000000000..d093d72879
Binary files /dev/null and b/examples/vision/img/masked_image_modeling/masked_image_modeling_17_0.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_17_1.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_17_1.png
deleted file mode 100644
index 30e8ba2082..0000000000
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_17_1.png and /dev/null differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_32_0.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_32_0.png
index 25efd08974..a1f9ec00b7 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_32_0.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_32_0.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_1.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_1.png
index 3354a913af..ff68ffc218 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_1.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_1.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_11.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_11.png
index 7849c4be50..bb6ac8de5e 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_11.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_11.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_13.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_13.png
index 150b08e574..4208628637 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_13.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_13.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_15.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_15.png
index c23cb4030c..76cc7e2662 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_15.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_15.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_17.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_17.png
index 4dd37daeff..ddab884a55 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_17.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_17.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_19.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_19.png
index 86da2188d9..06d4fc7eb6 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_19.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_19.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_21.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_21.png
index eb645817e7..986a1c721c 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_21.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_21.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_23.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_23.png
index 0858695a02..9c785ded77 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_23.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_23.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_25.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_25.png
index 0283a66504..36489cfa94 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_25.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_25.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_27.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_27.png
index 81461833d6..50ad130bd9 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_27.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_27.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_29.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_29.png
index 7417653caa..7c7a8a72b4 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_29.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_29.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_3.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_3.png
index 62346becc8..fb835a144e 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_3.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_3.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_31.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_31.png
index 5279c92492..04816339f9 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_31.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_31.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_33.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_33.png
index 2140ff22d5..dd9a3ced06 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_33.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_33.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_35.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_35.png
index fafc953117..8a09c96af9 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_35.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_35.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_37.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_37.png
index 512da149c9..41dcdd351f 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_37.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_37.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_39.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_39.png
index 2c43118cf5..9eb9d6bd54 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_39.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_39.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_5.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_5.png
index e73d66d66a..1f989b3cd0 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_5.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_5.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_7.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_7.png
index 9ecbbb5885..04c9bdfa54 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_7.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_7.png differ
diff --git a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_9.png b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_9.png
index 7c6dc12020..1a34260f2d 100644
Binary files a/examples/vision/img/masked_image_modeling/masked_image_modeling_34_9.png and b/examples/vision/img/masked_image_modeling/masked_image_modeling_34_9.png differ
diff --git a/examples/vision/ipynb/masked_image_modeling.ipynb b/examples/vision/ipynb/masked_image_modeling.ipynb
index de21a9829b..e0b42452a3 100644
--- a/examples/vision/ipynb/masked_image_modeling.ipynb
+++ b/examples/vision/ipynb/masked_image_modeling.ipynb
@@ -59,14 +59,7 @@
"colab_type": "text"
},
"source": [
- "## Imports\n",
- "\n",
- "This example requires TensorFlow Addons, which can be installed using the following\n",
- "command:\n",
- "\n",
- "```shell\n",
- "pip install -U tensorflow-addons\n",
- "```"
+ "## Imports"
]
},
{
@@ -77,10 +70,13 @@
},
"outputs": [],
"source": [
- "from tensorflow.keras import layers\n",
- "import tensorflow_addons as tfa\n",
- "from tensorflow import keras\n",
+ "import os\n",
+ "\n",
+ "os.environ[\"KERAS_BACKEND\"] = \"tensorflow\"\n",
+ "\n",
"import tensorflow as tf\n",
+ "import keras\n",
+ "from keras import layers\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
@@ -233,7 +229,10 @@
"\n",
"def get_test_augmentation_model():\n",
" model = keras.Sequential(\n",
- " [layers.Rescaling(1 / 255.0), layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),],\n",
+ " [\n",
+ " layers.Rescaling(1 / 255.0),\n",
+ " layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),\n",
+ " ],\n",
" name=\"test_data_augmentation\",\n",
" )\n",
" return model\n",
@@ -775,7 +774,7 @@
" loss_output = tf.gather(decoder_patches, mask_indices, axis=1, batch_dims=1)\n",
"\n",
" # Compute the total loss.\n",
- " total_loss = self.compiled_loss(loss_patch, loss_output)\n",
+ " total_loss = self.compute_loss(y=loss_patch, y_pred=loss_output)\n",
"\n",
" return total_loss, loss_patch, loss_output\n",
"\n",
@@ -793,21 +792,27 @@
" ]\n",
" grads = tape.gradient(total_loss, train_vars)\n",
" tv_list = []\n",
- " for (grad, var) in zip(grads, train_vars):\n",
+ " for grad, var in zip(grads, train_vars):\n",
" for g, v in zip(grad, var):\n",
" tv_list.append((g, v))\n",
" self.optimizer.apply_gradients(tv_list)\n",
"\n",
" # Report progress.\n",
- " self.compiled_metrics.update_state(loss_patch, loss_output)\n",
- " return {m.name: m.result() for m in self.metrics}\n",
+ " results = {}\n",
+ " for metric in self.metrics:\n",
+ " metric.update_state(loss_patch, loss_output)\n",
+ " results[metric.name] = metric.result()\n",
+ " return results\n",
"\n",
" def test_step(self, images):\n",
" total_loss, loss_patch, loss_output = self.calculate_loss(images, test=True)\n",
"\n",
" # Update the trackers.\n",
- " self.compiled_metrics.update_state(loss_patch, loss_output)\n",
- " return {m.name: m.result() for m in self.metrics}\n",
+ " results = {}\n",
+ " for metric in self.metrics:\n",
+ " metric.update_state(loss_patch, loss_output)\n",
+ " results[metric.name] = metric.result()\n",
+ " return results\n",
""
]
},
@@ -1022,14 +1027,19 @@
},
"outputs": [],
"source": [
- "optimizer = tfa.optimizers.AdamW(learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY)\n",
+ "optimizer = keras.optimizers.AdamW(\n",
+ " learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY\n",
+ ")\n",
"\n",
"# Compile and pretrain the model.\n",
"mae_model.compile(\n",
" optimizer=optimizer, loss=keras.losses.MeanSquaredError(), metrics=[\"mae\"]\n",
")\n",
"history = mae_model.fit(\n",
- " train_ds, epochs=EPOCHS, validation_data=val_ds, callbacks=train_callbacks,\n",
+ " train_ds,\n",
+ " epochs=EPOCHS,\n",
+ " validation_data=val_ds,\n",
+ " callbacks=train_callbacks,\n",
")\n",
"\n",
"# Measure its performance.\n",
diff --git a/examples/vision/masked_image_modeling.py b/examples/vision/masked_image_modeling.py
index 21703a7b49..afe850ae9b 100644
--- a/examples/vision/masked_image_modeling.py
+++ b/examples/vision/masked_image_modeling.py
@@ -43,19 +43,14 @@
"""
## Imports
-
-This example requires TensorFlow Addons, which can be installed using the following
-command:
-
-```shell
-pip install -U tensorflow-addons
-```
"""
+import os
+
+os.environ["KERAS_BACKEND"] = "tensorflow"
-from tensorflow.keras import layers
-import tensorflow_addons as tfa
-from tensorflow import keras
import tensorflow as tf
+import keras
+from keras import layers
import matplotlib.pyplot as plt
import numpy as np
@@ -599,7 +594,7 @@ def calculate_loss(self, images, test=False):
loss_output = tf.gather(decoder_patches, mask_indices, axis=1, batch_dims=1)
# Compute the total loss.
- total_loss = self.compiled_loss(loss_patch, loss_output)
+ total_loss = self.compute_loss(y=loss_patch, y_pred=loss_output)
return total_loss, loss_patch, loss_output
@@ -623,15 +618,21 @@ def train_step(self, images):
self.optimizer.apply_gradients(tv_list)
# Report progress.
- self.compiled_metrics.update_state(loss_patch, loss_output)
- return {m.name: m.result() for m in self.metrics}
+ results = {}
+ for metric in self.metrics:
+ metric.update_state(loss_patch, loss_output)
+ results[metric.name] = metric.result()
+ return results
def test_step(self, images):
total_loss, loss_patch, loss_output = self.calculate_loss(images, test=True)
# Update the trackers.
- self.compiled_metrics.update_state(loss_patch, loss_output)
- return {m.name: m.result() for m in self.metrics}
+ results = {}
+ for metric in self.metrics:
+ metric.update_state(loss_patch, loss_output)
+ results[metric.name] = metric.result()
+ return results
"""
@@ -785,7 +786,9 @@ def __call__(self, step):
## Model compilation and training
"""
-optimizer = tfa.optimizers.AdamW(learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY)
+optimizer = keras.optimizers.AdamW(
+ learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY
+)
# Compile and pretrain the model.
mae_model.compile(
diff --git a/examples/vision/md/masked_image_modeling.md b/examples/vision/md/masked_image_modeling.md
index 7e6c92baf6..30b9638670 100644
--- a/examples/vision/md/masked_image_modeling.md
+++ b/examples/vision/md/masked_image_modeling.md
@@ -46,19 +46,15 @@ As a reference, we reuse some of the code presented in
---
## Imports
-This example requires TensorFlow Addons, which can be installed using the following
-command:
-```shell
-pip install -U tensorflow-addons
-```
+```python
+import os
+os.environ["KERAS_BACKEND"] = "tensorflow"
-```python
-from tensorflow.keras import layers
-import tensorflow_addons as tfa
-from tensorflow import keras
import tensorflow as tf
+import keras
+from keras import layers
import matplotlib.pyplot as plt
import numpy as np
@@ -149,10 +145,6 @@ Training samples: 40000
Validation samples: 10000
Testing samples: 10000
-2021-11-24 01:10:52.088318: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA
-To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
-2021-11-24 01:10:54.356762: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 38444 MB memory: -> device: 0, name: A100-SXM4-40GB, pci bus id: 0000:00:04.0, compute capability: 8.0
-
```
---
@@ -187,7 +179,10 @@ def get_train_augmentation_model():
def get_test_augmentation_model():
model = keras.Sequential(
- [layers.Rescaling(1 / 255.0), layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),],
+ [
+ layers.Rescaling(1 / 255.0),
+ layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),
+ ],
name="test_data_augmentation",
)
return model
@@ -490,14 +485,9 @@ plt.title("Original")
plt.show()
```
-
-```
-2021-11-24 01:11:00.182447: I tensorflow/stream_executor/cuda/cuda_blas.cc:1774] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
-```
-
-![png](/img/examples/vision/masked_image_modeling/masked_image_modeling_17_1.png)
+![png](/img/examples/vision/masked_image_modeling/masked_image_modeling_17_0.png)
@@ -665,7 +655,7 @@ class MaskedAutoencoder(keras.Model):
loss_output = tf.gather(decoder_patches, mask_indices, axis=1, batch_dims=1)
# Compute the total loss.
- total_loss = self.compiled_loss(loss_patch, loss_output)
+ total_loss = self.compute_loss(y=loss_patch, y_pred=loss_output)
return total_loss, loss_patch, loss_output
@@ -683,21 +673,27 @@ class MaskedAutoencoder(keras.Model):
]
grads = tape.gradient(total_loss, train_vars)
tv_list = []
- for (grad, var) in zip(grads, train_vars):
+ for grad, var in zip(grads, train_vars):
for g, v in zip(grad, var):
tv_list.append((g, v))
self.optimizer.apply_gradients(tv_list)
# Report progress.
- self.compiled_metrics.update_state(loss_patch, loss_output)
- return {m.name: m.result() for m in self.metrics}
+ results = {}
+ for metric in self.metrics:
+ metric.update_state(loss_patch, loss_output)
+ results[metric.name] = metric.result()
+ return results
def test_step(self, images):
total_loss, loss_patch, loss_output = self.calculate_loss(images, test=True)
# Update the trackers.
- self.compiled_metrics.update_state(loss_patch, loss_output)
- return {m.name: m.result() for m in self.metrics}
+ results = {}
+ for metric in self.metrics:
+ metric.update_state(loss_patch, loss_output)
+ results[metric.name] = metric.result()
+ return results
```
@@ -862,14 +858,19 @@ train_callbacks = [TrainMonitor(epoch_interval=5)]
```python
-optimizer = tfa.optimizers.AdamW(learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY)
+optimizer = keras.optimizers.AdamW(
+ learning_rate=scheduled_lrs, weight_decay=WEIGHT_DECAY
+)
# Compile and pretrain the model.
mae_model.compile(
optimizer=optimizer, loss=keras.losses.MeanSquaredError(), metrics=["mae"]
)
history = mae_model.fit(
- train_ds, epochs=EPOCHS, validation_data=val_ds, callbacks=train_callbacks,
+ train_ds,
+ epochs=EPOCHS,
+ validation_data=val_ds,
+ callbacks=train_callbacks,
)
# Measure its performance.
@@ -881,7 +882,7 @@ print(f"MAE: {mae:.2f}")
```
Epoch 1/100
-157/157 [==============================] - ETA: 0s - loss: 0.0507 - mae: 0.1811
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 80ms/step - mae: 0.2035 - loss: 0.4828
Idx chosen: 92
```
@@ -893,17 +894,17 @@ Idx chosen: 92
```
-157/157 [==============================] - 19s 54ms/step - loss: 0.0507 - mae: 0.1811 - val_loss: 0.0417 - val_mae: 0.1630
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 47s 95ms/step - mae: 0.2033 - loss: 0.4828 - val_loss: 0.5225 - val_mae: 0.1600
Epoch 2/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0385 - mae: 0.1550 - val_loss: 0.0349 - val_mae: 0.1460
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1592 - loss: 0.5128 - val_loss: 0.5290 - val_mae: 0.1511
Epoch 3/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0336 - mae: 0.1420 - val_loss: 0.0311 - val_mae: 0.1352
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1530 - loss: 0.5193 - val_loss: 0.5336 - val_mae: 0.1478
Epoch 4/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0299 - mae: 0.1325 - val_loss: 0.0302 - val_mae: 0.1321
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1502 - loss: 0.5220 - val_loss: 0.5298 - val_mae: 0.1436
Epoch 5/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0269 - mae: 0.1246 - val_loss: 0.0256 - val_mae: 0.1207
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1458 - loss: 0.5245 - val_loss: 0.5296 - val_mae: 0.1405
Epoch 6/100
-156/157 [============================>.] - ETA: 0s - loss: 0.0246 - mae: 0.1181
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 81ms/step - mae: 0.1414 - loss: 0.5265
Idx chosen: 14
```
@@ -915,17 +916,17 @@ Idx chosen: 14
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0246 - mae: 0.1181 - val_loss: 0.0241 - val_mae: 0.1166
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 14s 88ms/step - mae: 0.1414 - loss: 0.5265 - val_loss: 0.5328 - val_mae: 0.1402
Epoch 7/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0232 - mae: 0.1142 - val_loss: 0.0237 - val_mae: 0.1152
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1399 - loss: 0.5278 - val_loss: 0.5361 - val_mae: 0.1360
Epoch 8/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0222 - mae: 0.1113 - val_loss: 0.0216 - val_mae: 0.1088
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1389 - loss: 0.5285 - val_loss: 0.5365 - val_mae: 0.1424
Epoch 9/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0214 - mae: 0.1086 - val_loss: 0.0217 - val_mae: 0.1096
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1379 - loss: 0.5295 - val_loss: 0.5312 - val_mae: 0.1345
Epoch 10/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0206 - mae: 0.1064 - val_loss: 0.0215 - val_mae: 0.1100
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1352 - loss: 0.5308 - val_loss: 0.5374 - val_mae: 0.1321
Epoch 11/100
-157/157 [==============================] - ETA: 0s - loss: 0.0203 - mae: 0.1053
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 81ms/step - mae: 0.1339 - loss: 0.5317
Idx chosen: 106
```
@@ -937,17 +938,17 @@ Idx chosen: 106
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0203 - mae: 0.1053 - val_loss: 0.0205 - val_mae: 0.1052
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 14s 87ms/step - mae: 0.1339 - loss: 0.5317 - val_loss: 0.5392 - val_mae: 0.1330
Epoch 12/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0200 - mae: 0.1043 - val_loss: 0.0196 - val_mae: 0.1028
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1321 - loss: 0.5331 - val_loss: 0.5383 - val_mae: 0.1301
Epoch 13/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0196 - mae: 0.1030 - val_loss: 0.0198 - val_mae: 0.1043
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1317 - loss: 0.5343 - val_loss: 0.5405 - val_mae: 0.1322
Epoch 14/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0193 - mae: 0.1019 - val_loss: 0.0192 - val_mae: 0.1004
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1326 - loss: 0.5338 - val_loss: 0.5404 - val_mae: 0.1280
Epoch 15/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0191 - mae: 0.1013 - val_loss: 0.0198 - val_mae: 0.1031
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 84ms/step - mae: 0.1297 - loss: 0.5343 - val_loss: 0.5444 - val_mae: 0.1261
Epoch 16/100
-157/157 [==============================] - ETA: 0s - loss: 0.0189 - mae: 0.1007
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 82ms/step - mae: 0.1276 - loss: 0.5361
Idx chosen: 71
```
@@ -959,17 +960,17 @@ Idx chosen: 71
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0189 - mae: 0.1007 - val_loss: 0.0188 - val_mae: 0.1003
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 14s 91ms/step - mae: 0.1276 - loss: 0.5362 - val_loss: 0.5456 - val_mae: 0.1243
Epoch 17/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0185 - mae: 0.0992 - val_loss: 0.0187 - val_mae: 0.0993
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1262 - loss: 0.5382 - val_loss: 0.5427 - val_mae: 0.1233
Epoch 18/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0185 - mae: 0.0992 - val_loss: 0.0192 - val_mae: 0.1021
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1221 - loss: 0.5407 - val_loss: 0.5473 - val_mae: 0.1196
Epoch 19/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0182 - mae: 0.0984 - val_loss: 0.0181 - val_mae: 0.0967
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1209 - loss: 0.5412 - val_loss: 0.5511 - val_mae: 0.1176
Epoch 20/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0180 - mae: 0.0975 - val_loss: 0.0183 - val_mae: 0.0996
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1202 - loss: 0.5422 - val_loss: 0.5515 - val_mae: 0.1167
Epoch 21/100
-156/157 [============================>.] - ETA: 0s - loss: 0.0180 - mae: 0.0975
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1186 - loss: 0.5430
Idx chosen: 188
```
@@ -981,17 +982,17 @@ Idx chosen: 188
```
-157/157 [==============================] - 7s 47ms/step - loss: 0.0180 - mae: 0.0975 - val_loss: 0.0185 - val_mae: 0.0992
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 85ms/step - mae: 0.1186 - loss: 0.5430 - val_loss: 0.5546 - val_mae: 0.1168
Epoch 22/100
-157/157 [==============================] - 7s 45ms/step - loss: 0.0179 - mae: 0.0971 - val_loss: 0.0181 - val_mae: 0.0977
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1171 - loss: 0.5446 - val_loss: 0.5500 - val_mae: 0.1155
Epoch 23/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0178 - mae: 0.0966 - val_loss: 0.0179 - val_mae: 0.0962
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1161 - loss: 0.5457 - val_loss: 0.5559 - val_mae: 0.1135
Epoch 24/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0178 - mae: 0.0966 - val_loss: 0.0176 - val_mae: 0.0952
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1135 - loss: 0.5479 - val_loss: 0.5521 - val_mae: 0.1112
Epoch 25/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0176 - mae: 0.0960 - val_loss: 0.0182 - val_mae: 0.0984
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1128 - loss: 0.5480 - val_loss: 0.5505 - val_mae: 0.1122
Epoch 26/100
-157/157 [==============================] - ETA: 0s - loss: 0.0175 - mae: 0.0958
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1123 - loss: 0.5470
Idx chosen: 20
```
@@ -1003,17 +1004,17 @@ Idx chosen: 20
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0175 - mae: 0.0958 - val_loss: 0.0176 - val_mae: 0.0958
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.1123 - loss: 0.5470 - val_loss: 0.5572 - val_mae: 0.1127
Epoch 27/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0175 - mae: 0.0957 - val_loss: 0.0175 - val_mae: 0.0948
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1114 - loss: 0.5487 - val_loss: 0.5555 - val_mae: 0.1092
Epoch 28/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0175 - mae: 0.0956 - val_loss: 0.0173 - val_mae: 0.0947
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1108 - loss: 0.5492 - val_loss: 0.5569 - val_mae: 0.1110
Epoch 29/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0172 - mae: 0.0949 - val_loss: 0.0174 - val_mae: 0.0948
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1104 - loss: 0.5491 - val_loss: 0.5517 - val_mae: 0.1110
Epoch 30/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0172 - mae: 0.0948 - val_loss: 0.0174 - val_mae: 0.0944
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1099 - loss: 0.5490 - val_loss: 0.5543 - val_mae: 0.1104
Epoch 31/100
-157/157 [==============================] - ETA: 0s - loss: 0.0172 - mae: 0.0945
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1095 - loss: 0.5501
Idx chosen: 102
```
@@ -1025,17 +1026,17 @@ Idx chosen: 102
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0172 - mae: 0.0945 - val_loss: 0.0169 - val_mae: 0.0932
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.1095 - loss: 0.5501 - val_loss: 0.5578 - val_mae: 0.1108
Epoch 32/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0172 - mae: 0.0947 - val_loss: 0.0174 - val_mae: 0.0961
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1089 - loss: 0.5503 - val_loss: 0.5620 - val_mae: 0.1081
Epoch 33/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0171 - mae: 0.0945 - val_loss: 0.0171 - val_mae: 0.0937
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1079 - loss: 0.5509 - val_loss: 0.5618 - val_mae: 0.1067
Epoch 34/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0170 - mae: 0.0938 - val_loss: 0.0171 - val_mae: 0.0941
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1067 - loss: 0.5524 - val_loss: 0.5627 - val_mae: 0.1059
Epoch 35/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0170 - mae: 0.0940 - val_loss: 0.0171 - val_mae: 0.0948
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1068 - loss: 0.5515 - val_loss: 0.5576 - val_mae: 0.1050
Epoch 36/100
-157/157 [==============================] - ETA: 0s - loss: 0.0168 - mae: 0.0933
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1057 - loss: 0.5526
Idx chosen: 121
```
@@ -1047,17 +1048,17 @@ Idx chosen: 121
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0168 - mae: 0.0933 - val_loss: 0.0170 - val_mae: 0.0935
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.1057 - loss: 0.5526 - val_loss: 0.5627 - val_mae: 0.1050
Epoch 37/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0169 - mae: 0.0935 - val_loss: 0.0168 - val_mae: 0.0933
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1065 - loss: 0.5534 - val_loss: 0.5638 - val_mae: 0.1050
Epoch 38/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0168 - mae: 0.0933 - val_loss: 0.0170 - val_mae: 0.0935
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1055 - loss: 0.5528 - val_loss: 0.5527 - val_mae: 0.1083
Epoch 39/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0167 - mae: 0.0931 - val_loss: 0.0169 - val_mae: 0.0934
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 20s 82ms/step - mae: 0.1056 - loss: 0.5516 - val_loss: 0.5562 - val_mae: 0.1044
Epoch 40/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0167 - mae: 0.0930 - val_loss: 0.0169 - val_mae: 0.0934
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1053 - loss: 0.5528 - val_loss: 0.5567 - val_mae: 0.1051
Epoch 41/100
-157/157 [==============================] - ETA: 0s - loss: 0.0167 - mae: 0.0929
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 78ms/step - mae: 0.1049 - loss: 0.5533
Idx chosen: 210
```
@@ -1069,17 +1070,17 @@ Idx chosen: 210
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0167 - mae: 0.0929 - val_loss: 0.0169 - val_mae: 0.0930
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 85ms/step - mae: 0.1049 - loss: 0.5533 - val_loss: 0.5620 - val_mae: 0.1030
Epoch 42/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0167 - mae: 0.0928 - val_loss: 0.0170 - val_mae: 0.0941
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1041 - loss: 0.5534 - val_loss: 0.5650 - val_mae: 0.1052
Epoch 43/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0166 - mae: 0.0925 - val_loss: 0.0169 - val_mae: 0.0931
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1048 - loss: 0.5526 - val_loss: 0.5619 - val_mae: 0.1027
Epoch 44/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0165 - mae: 0.0921 - val_loss: 0.0165 - val_mae: 0.0914
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1037 - loss: 0.5543 - val_loss: 0.5615 - val_mae: 0.1031
Epoch 45/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0165 - mae: 0.0922 - val_loss: 0.0165 - val_mae: 0.0915
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1036 - loss: 0.5535 - val_loss: 0.5575 - val_mae: 0.1026
Epoch 46/100
-157/157 [==============================] - ETA: 0s - loss: 0.0165 - mae: 0.0922
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 78ms/step - mae: 0.1032 - loss: 0.5537
Idx chosen: 214
```
@@ -1091,17 +1092,17 @@ Idx chosen: 214
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0165 - mae: 0.0922 - val_loss: 0.0166 - val_mae: 0.0914
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 85ms/step - mae: 0.1032 - loss: 0.5537 - val_loss: 0.5549 - val_mae: 0.1037
Epoch 47/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0164 - mae: 0.0919 - val_loss: 0.0164 - val_mae: 0.0912
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 84ms/step - mae: 0.1035 - loss: 0.5539 - val_loss: 0.5597 - val_mae: 0.1031
Epoch 48/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0163 - mae: 0.0914 - val_loss: 0.0166 - val_mae: 0.0923
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1033 - loss: 0.5533 - val_loss: 0.5650 - val_mae: 0.1013
Epoch 49/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0163 - mae: 0.0914 - val_loss: 0.0164 - val_mae: 0.0914
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.1027 - loss: 0.5543 - val_loss: 0.5571 - val_mae: 0.1028
Epoch 50/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0162 - mae: 0.0912 - val_loss: 0.0164 - val_mae: 0.0916
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1024 - loss: 0.5548 - val_loss: 0.5592 - val_mae: 0.1018
Epoch 51/100
-157/157 [==============================] - ETA: 0s - loss: 0.0162 - mae: 0.0913
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 78ms/step - mae: 0.1025 - loss: 0.5543
Idx chosen: 74
```
@@ -1113,17 +1114,17 @@ Idx chosen: 74
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0162 - mae: 0.0913 - val_loss: 0.0165 - val_mae: 0.0919
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 85ms/step - mae: 0.1025 - loss: 0.5543 - val_loss: 0.5645 - val_mae: 0.1007
Epoch 52/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0162 - mae: 0.0909 - val_loss: 0.0163 - val_mae: 0.0912
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.1025 - loss: 0.5544 - val_loss: 0.5616 - val_mae: 0.1004
Epoch 53/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0161 - mae: 0.0908 - val_loss: 0.0161 - val_mae: 0.0903
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1014 - loss: 0.5547 - val_loss: 0.5594 - val_mae: 0.1007
Epoch 54/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0161 - mae: 0.0908 - val_loss: 0.0162 - val_mae: 0.0901
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1014 - loss: 0.5550 - val_loss: 0.5687 - val_mae: 0.1012
Epoch 55/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0161 - mae: 0.0907 - val_loss: 0.0162 - val_mae: 0.0909
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1022 - loss: 0.5551 - val_loss: 0.5572 - val_mae: 0.1018
Epoch 56/100
-156/157 [============================>.] - ETA: 0s - loss: 0.0160 - mae: 0.0904
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1015 - loss: 0.5558
Idx chosen: 202
```
@@ -1135,17 +1136,17 @@ Idx chosen: 202
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0160 - mae: 0.0904 - val_loss: 0.0160 - val_mae: 0.0908
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.1015 - loss: 0.5558 - val_loss: 0.5619 - val_mae: 0.0996
Epoch 57/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0159 - mae: 0.0902 - val_loss: 0.0160 - val_mae: 0.0899
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1008 - loss: 0.5550 - val_loss: 0.5614 - val_mae: 0.0996
Epoch 58/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0159 - mae: 0.0901 - val_loss: 0.0162 - val_mae: 0.0916
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1004 - loss: 0.5557 - val_loss: 0.5620 - val_mae: 0.0995
Epoch 59/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0159 - mae: 0.0898 - val_loss: 0.0160 - val_mae: 0.0903
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.1002 - loss: 0.5558 - val_loss: 0.5612 - val_mae: 0.0997
Epoch 60/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0159 - mae: 0.0898 - val_loss: 0.0159 - val_mae: 0.0897
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.1005 - loss: 0.5563 - val_loss: 0.5598 - val_mae: 0.1000
Epoch 61/100
-157/157 [==============================] - ETA: 0s - loss: 0.0158 - mae: 0.0894
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.1001 - loss: 0.5564
Idx chosen: 87
```
@@ -1157,17 +1158,17 @@ Idx chosen: 87
```
-157/157 [==============================] - 7s 48ms/step - loss: 0.0158 - mae: 0.0894 - val_loss: 0.0160 - val_mae: 0.0895
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.1001 - loss: 0.5564 - val_loss: 0.5606 - val_mae: 0.0998
Epoch 62/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0158 - mae: 0.0895 - val_loss: 0.0161 - val_mae: 0.0905
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.0998 - loss: 0.5562 - val_loss: 0.5643 - val_mae: 0.0988
Epoch 63/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0157 - mae: 0.0891 - val_loss: 0.0158 - val_mae: 0.0894
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.1001 - loss: 0.5556 - val_loss: 0.5657 - val_mae: 0.0985
Epoch 64/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0157 - mae: 0.0890 - val_loss: 0.0158 - val_mae: 0.0889
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0998 - loss: 0.5566 - val_loss: 0.5624 - val_mae: 0.0989
Epoch 65/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0157 - mae: 0.0890 - val_loss: 0.0159 - val_mae: 0.0893
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0994 - loss: 0.5564 - val_loss: 0.5576 - val_mae: 0.0999
Epoch 66/100
-157/157 [==============================] - ETA: 0s - loss: 0.0156 - mae: 0.0888
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step - mae: 0.0993 - loss: 0.5567
Idx chosen: 116
```
@@ -1179,17 +1180,17 @@ Idx chosen: 116
```
-157/157 [==============================] - 7s 47ms/step - loss: 0.0156 - mae: 0.0888 - val_loss: 0.0160 - val_mae: 0.0903
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 86ms/step - mae: 0.0993 - loss: 0.5567 - val_loss: 0.5572 - val_mae: 0.1000
Epoch 67/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0156 - mae: 0.0886 - val_loss: 0.0156 - val_mae: 0.0881
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0990 - loss: 0.5570 - val_loss: 0.5619 - val_mae: 0.0981
Epoch 68/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0155 - mae: 0.0883 - val_loss: 0.0156 - val_mae: 0.0885
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0987 - loss: 0.5578 - val_loss: 0.5644 - val_mae: 0.0973
Epoch 69/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0154 - mae: 0.0881 - val_loss: 0.0155 - val_mae: 0.0878
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0981 - loss: 0.5577 - val_loss: 0.5639 - val_mae: 0.0976
Epoch 70/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0154 - mae: 0.0881 - val_loss: 0.0158 - val_mae: 0.0891
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0986 - loss: 0.5563 - val_loss: 0.5601 - val_mae: 0.0989
Epoch 71/100
-156/157 [============================>.] - ETA: 0s - loss: 0.0154 - mae: 0.0879
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0982 - loss: 0.5578
Idx chosen: 99
```
@@ -1201,17 +1202,17 @@ Idx chosen: 99
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0154 - mae: 0.0879 - val_loss: 0.0155 - val_mae: 0.0884
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 84ms/step - mae: 0.0982 - loss: 0.5577 - val_loss: 0.5628 - val_mae: 0.0970
Epoch 72/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0153 - mae: 0.0877 - val_loss: 0.0154 - val_mae: 0.0878
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0979 - loss: 0.5569 - val_loss: 0.5637 - val_mae: 0.0968
Epoch 73/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0153 - mae: 0.0876 - val_loss: 0.0155 - val_mae: 0.0879
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0979 - loss: 0.5575 - val_loss: 0.5606 - val_mae: 0.0975
Epoch 74/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0152 - mae: 0.0874 - val_loss: 0.0153 - val_mae: 0.0876
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0977 - loss: 0.5572 - val_loss: 0.5628 - val_mae: 0.0967
Epoch 75/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0152 - mae: 0.0872 - val_loss: 0.0153 - val_mae: 0.0872
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0975 - loss: 0.5572 - val_loss: 0.5631 - val_mae: 0.0964
Epoch 76/100
-157/157 [==============================] - ETA: 0s - loss: 0.0151 - mae: 0.0870
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0973 - loss: 0.5580
Idx chosen: 103
```
@@ -1223,17 +1224,17 @@ Idx chosen: 103
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0151 - mae: 0.0870 - val_loss: 0.0153 - val_mae: 0.0873
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.0973 - loss: 0.5579 - val_loss: 0.5628 - val_mae: 0.0967
Epoch 77/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0151 - mae: 0.0869 - val_loss: 0.0152 - val_mae: 0.0872
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0974 - loss: 0.5579 - val_loss: 0.5638 - val_mae: 0.0963
Epoch 78/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0151 - mae: 0.0867 - val_loss: 0.0152 - val_mae: 0.0869
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0968 - loss: 0.5585 - val_loss: 0.5615 - val_mae: 0.0967
Epoch 79/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0151 - mae: 0.0867 - val_loss: 0.0151 - val_mae: 0.0863
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0969 - loss: 0.5578 - val_loss: 0.5641 - val_mae: 0.0959
Epoch 80/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0150 - mae: 0.0865 - val_loss: 0.0150 - val_mae: 0.0860
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0967 - loss: 0.5584 - val_loss: 0.5619 - val_mae: 0.0962
Epoch 81/100
-157/157 [==============================] - ETA: 0s - loss: 0.0150 - mae: 0.0865
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0965 - loss: 0.5578
Idx chosen: 151
```
@@ -1245,17 +1246,17 @@ Idx chosen: 151
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0150 - mae: 0.0865 - val_loss: 0.0151 - val_mae: 0.0862
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.0965 - loss: 0.5578 - val_loss: 0.5651 - val_mae: 0.0957
Epoch 82/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0149 - mae: 0.0861 - val_loss: 0.0151 - val_mae: 0.0859
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0965 - loss: 0.5583 - val_loss: 0.5644 - val_mae: 0.0957
Epoch 83/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0149 - mae: 0.0861 - val_loss: 0.0149 - val_mae: 0.0857
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0962 - loss: 0.5584 - val_loss: 0.5649 - val_mae: 0.0954
Epoch 84/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0149 - mae: 0.0860 - val_loss: 0.0151 - val_mae: 0.0865
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0962 - loss: 0.5586 - val_loss: 0.5611 - val_mae: 0.0962
Epoch 85/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0148 - mae: 0.0858 - val_loss: 0.0150 - val_mae: 0.0856
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0961 - loss: 0.5582 - val_loss: 0.5638 - val_mae: 0.0956
Epoch 86/100
-157/157 [==============================] - ETA: 0s - loss: 0.0148 - mae: 0.0856
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0961 - loss: 0.5584
Idx chosen: 130
```
@@ -1267,17 +1268,17 @@ Idx chosen: 130
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0148 - mae: 0.0856 - val_loss: 0.0149 - val_mae: 0.0855
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 83ms/step - mae: 0.0961 - loss: 0.5584 - val_loss: 0.5641 - val_mae: 0.0954
Epoch 87/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0148 - mae: 0.0855 - val_loss: 0.0148 - val_mae: 0.0851
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0959 - loss: 0.5580 - val_loss: 0.5641 - val_mae: 0.0953
Epoch 88/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0148 - mae: 0.0856 - val_loss: 0.0149 - val_mae: 0.0855
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0960 - loss: 0.5583 - val_loss: 0.5642 - val_mae: 0.0953
Epoch 89/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0147 - mae: 0.0853 - val_loss: 0.0148 - val_mae: 0.0852
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0958 - loss: 0.5591 - val_loss: 0.5635 - val_mae: 0.0953
Epoch 90/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0147 - mae: 0.0853 - val_loss: 0.0148 - val_mae: 0.0850
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0957 - loss: 0.5587 - val_loss: 0.5648 - val_mae: 0.0948
Epoch 91/100
-157/157 [==============================] - ETA: 0s - loss: 0.0147 - mae: 0.0852
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0957 - loss: 0.5585
Idx chosen: 149
```
@@ -1289,17 +1290,17 @@ Idx chosen: 149
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0147 - mae: 0.0852 - val_loss: 0.0148 - val_mae: 0.0851
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 84ms/step - mae: 0.0957 - loss: 0.5585 - val_loss: 0.5636 - val_mae: 0.0952
Epoch 92/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0146 - mae: 0.0851 - val_loss: 0.0147 - val_mae: 0.0849
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0957 - loss: 0.5593 - val_loss: 0.5642 - val_mae: 0.0950
Epoch 93/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0147 - mae: 0.0853 - val_loss: 0.0147 - val_mae: 0.0849
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0957 - loss: 0.5598 - val_loss: 0.5635 - val_mae: 0.0950
Epoch 94/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0147 - mae: 0.0852 - val_loss: 0.0148 - val_mae: 0.0850
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0956 - loss: 0.5587 - val_loss: 0.5641 - val_mae: 0.0950
Epoch 95/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0147 - mae: 0.0852 - val_loss: 0.0148 - val_mae: 0.0853
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0955 - loss: 0.5587 - val_loss: 0.5637 - val_mae: 0.0950
Epoch 96/100
-157/157 [==============================] - ETA: 0s - loss: 0.0147 - mae: 0.0853
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step - mae: 0.0956 - loss: 0.5585
Idx chosen: 52
```
@@ -1311,18 +1312,18 @@ Idx chosen: 52
```
-157/157 [==============================] - 7s 46ms/step - loss: 0.0147 - mae: 0.0853 - val_loss: 0.0148 - val_mae: 0.0853
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 14s 87ms/step - mae: 0.0956 - loss: 0.5585 - val_loss: 0.5643 - val_mae: 0.0950
Epoch 97/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0148 - mae: 0.0856 - val_loss: 0.0149 - val_mae: 0.0855
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 81ms/step - mae: 0.0956 - loss: 0.5587 - val_loss: 0.5642 - val_mae: 0.0950
Epoch 98/100
-157/157 [==============================] - 7s 43ms/step - loss: 0.0148 - mae: 0.0857 - val_loss: 0.0149 - val_mae: 0.0858
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 82ms/step - mae: 0.0954 - loss: 0.5586 - val_loss: 0.5639 - val_mae: 0.0950
Epoch 99/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0149 - mae: 0.0863 - val_loss: 0.0150 - val_mae: 0.0865
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0954 - loss: 0.5580 - val_loss: 0.5641 - val_mae: 0.0950
Epoch 100/100
-157/157 [==============================] - 7s 44ms/step - loss: 0.0150 - mae: 0.0873 - val_loss: 0.0153 - val_mae: 0.0881
-40/40 [==============================] - 1s 15ms/step - loss: 0.0154 - mae: 0.0882
-Loss: 0.02
-MAE: 0.09
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 13s 80ms/step - mae: 0.0955 - loss: 0.5587 - val_loss: 0.5639 - val_mae: 0.0951
+ 40/40 ━━━━━━━━━━━━━━━━━━━━ 1s 13ms/step - mae: 0.0955 - loss: 0.5684
+Loss: 0.57
+MAE: 0.10
```
@@ -1366,35 +1367,52 @@ for layer in downstream_model.layers[:-1]:
downstream_model.summary()
```
-
-```
-Model: "linear_probe_model"
-_________________________________________________________________
- Layer (type) Output Shape Param #
-=================================================================
- patches_1 (Patches) (None, 64, 108) 0
-
- patch_encoder_1 (PatchEncod (None, 64, 128) 22252
- er)
-
- mae_encoder (Functional) (None, None, 128) 1981696
-
- batch_normalization (BatchN (None, 64, 128) 512
- ormalization)
-
- global_average_pooling1d (G (None, 128) 0
- lobalAveragePooling1D)
-
- dense_19 (Dense) (None, 10) 1290
-
-=================================================================
-Total params: 2,005,750
-Trainable params: 1,290
-Non-trainable params: 2,004,460
-_________________________________________________________________
-```
-
+
Model: "linear_probe_model"
+
+
+
+
+
+
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
+┃ Layer (type) ┃ Output Shape ┃ Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
+│ patches_1 (Patches) │ (None, 64, 108) │ 0 │
+├─────────────────────────────────┼───────────────────────────┼────────────┤
+│ patch_encoder_1 (PatchEncoder) │ (None, 64, 128) │ 22,144 │
+├─────────────────────────────────┼───────────────────────────┼────────────┤
+│ mae_encoder (Functional) │ (None, 64, 128) │ 1,981,696 │
+├─────────────────────────────────┼───────────────────────────┼────────────┤
+│ batch_normalization │ (None, 64, 128) │ 512 │
+│ (BatchNormalization) │ │ │
+├─────────────────────────────────┼───────────────────────────┼────────────┤
+│ global_average_pooling1d │ (None, 128) │ 0 │
+│ (GlobalAveragePooling1D) │ │ │
+├─────────────────────────────────┼───────────────────────────┼────────────┤
+│ dense_20 (Dense) │ (None, 10) │ 1,290 │
+└─────────────────────────────────┴───────────────────────────┴────────────┘
+
+
+
+
+
+
Total params: 2,005,642 (7.65 MB)
+
+
+
+
+
+
Trainable params: 1,290 (5.04 KB)
+
+
+
+
+
+
Non-trainable params: 2,004,352 (7.65 MB)
+
+
+
+
We are using average pooling to extract learned representations from the MAE encoder.
Another approach would be to use a learnable dummy token inside the encoder during
pretraining (resembling the [CLS] token). Then we can extract representations from that
@@ -1457,107 +1475,112 @@ print(f"Accuracy on the test set: {accuracy}%.")
```
Epoch 1/50
-157/157 [==============================] - 11s 43ms/step - loss: 2.2131 - accuracy: 0.1838 - val_loss: 2.0249 - val_accuracy: 0.2986
+ 7/157 [37m━━━━━━━━━━━━━━━━━━━━ 3s 21ms/step - accuracy: 0.1183 - loss: 3.3939
+
+WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
+I0000 00:00:1700264823.481598 64012 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
+
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 70s 242ms/step - accuracy: 0.1967 - loss: 2.6073 - val_accuracy: 0.3631 - val_loss: 1.7846
Epoch 2/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.9065 - accuracy: 0.3498 - val_loss: 1.7813 - val_accuracy: 0.3913
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.3521 - loss: 1.8063 - val_accuracy: 0.3677 - val_loss: 1.7301
Epoch 3/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.7443 - accuracy: 0.3995 - val_loss: 1.6705 - val_accuracy: 0.4195
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3580 - loss: 1.7580 - val_accuracy: 0.3649 - val_loss: 1.7326
Epoch 4/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.6645 - accuracy: 0.4201 - val_loss: 1.6107 - val_accuracy: 0.4344
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3617 - loss: 1.7471 - val_accuracy: 0.3810 - val_loss: 1.7353
Epoch 5/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.6169 - accuracy: 0.4320 - val_loss: 1.5747 - val_accuracy: 0.4435
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 35ms/step - accuracy: 0.3547 - loss: 1.7728 - val_accuracy: 0.3526 - val_loss: 1.8496
Epoch 6/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5843 - accuracy: 0.4364 - val_loss: 1.5476 - val_accuracy: 0.4496
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 35ms/step - accuracy: 0.3546 - loss: 1.7866 - val_accuracy: 0.3896 - val_loss: 1.7583
Epoch 7/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5634 - accuracy: 0.4418 - val_loss: 1.5294 - val_accuracy: 0.4540
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 37ms/step - accuracy: 0.3587 - loss: 1.7924 - val_accuracy: 0.3674 - val_loss: 1.7729
Epoch 8/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5462 - accuracy: 0.4452 - val_loss: 1.5158 - val_accuracy: 0.4575
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 38ms/step - accuracy: 0.3616 - loss: 1.7912 - val_accuracy: 0.3685 - val_loss: 1.7928
Epoch 9/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5365 - accuracy: 0.4468 - val_loss: 1.5068 - val_accuracy: 0.4602
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 36ms/step - accuracy: 0.3707 - loss: 1.7543 - val_accuracy: 0.3568 - val_loss: 1.7943
Epoch 10/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5237 - accuracy: 0.4541 - val_loss: 1.4971 - val_accuracy: 0.4616
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3719 - loss: 1.7451 - val_accuracy: 0.3859 - val_loss: 1.7230
Epoch 11/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5171 - accuracy: 0.4539 - val_loss: 1.4902 - val_accuracy: 0.4620
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3781 - loss: 1.7384 - val_accuracy: 0.3711 - val_loss: 1.7608
Epoch 12/50
-157/157 [==============================] - 6s 37ms/step - loss: 1.5127 - accuracy: 0.4552 - val_loss: 1.4850 - val_accuracy: 0.4640
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 35ms/step - accuracy: 0.3791 - loss: 1.7249 - val_accuracy: 0.4004 - val_loss: 1.6961
Epoch 13/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.5027 - accuracy: 0.4590 - val_loss: 1.4796 - val_accuracy: 0.4669
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3818 - loss: 1.7303 - val_accuracy: 0.3501 - val_loss: 1.8506
Epoch 14/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4985 - accuracy: 0.4587 - val_loss: 1.4747 - val_accuracy: 0.4673
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3841 - loss: 1.7179 - val_accuracy: 0.3810 - val_loss: 1.8033
Epoch 15/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4975 - accuracy: 0.4588 - val_loss: 1.4694 - val_accuracy: 0.4694
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3818 - loss: 1.7172 - val_accuracy: 0.4168 - val_loss: 1.6507
Epoch 16/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4933 - accuracy: 0.4596 - val_loss: 1.4661 - val_accuracy: 0.4698
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 36ms/step - accuracy: 0.3851 - loss: 1.7059 - val_accuracy: 0.3806 - val_loss: 1.7581
Epoch 17/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4889 - accuracy: 0.4608 - val_loss: 1.4628 - val_accuracy: 0.4721
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3747 - loss: 1.7356 - val_accuracy: 0.4094 - val_loss: 1.6466
Epoch 18/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4869 - accuracy: 0.4659 - val_loss: 1.4623 - val_accuracy: 0.4721
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.3828 - loss: 1.7221 - val_accuracy: 0.4015 - val_loss: 1.6757
Epoch 19/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4826 - accuracy: 0.4639 - val_loss: 1.4585 - val_accuracy: 0.4716
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3889 - loss: 1.6939 - val_accuracy: 0.4102 - val_loss: 1.6392
Epoch 20/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4813 - accuracy: 0.4653 - val_loss: 1.4559 - val_accuracy: 0.4743
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3943 - loss: 1.6857 - val_accuracy: 0.4028 - val_loss: 1.6518
Epoch 21/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4824 - accuracy: 0.4644 - val_loss: 1.4542 - val_accuracy: 0.4746
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3870 - loss: 1.6970 - val_accuracy: 0.3949 - val_loss: 1.7283
Epoch 22/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4768 - accuracy: 0.4667 - val_loss: 1.4526 - val_accuracy: 0.4757
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3893 - loss: 1.6838 - val_accuracy: 0.4207 - val_loss: 1.6292
Epoch 23/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4775 - accuracy: 0.4644 - val_loss: 1.4507 - val_accuracy: 0.4751
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.4005 - loss: 1.6606 - val_accuracy: 0.4152 - val_loss: 1.6320
Epoch 24/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4750 - accuracy: 0.4670 - val_loss: 1.4481 - val_accuracy: 0.4756
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3978 - loss: 1.6556 - val_accuracy: 0.4042 - val_loss: 1.6657
Epoch 25/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4726 - accuracy: 0.4663 - val_loss: 1.4467 - val_accuracy: 0.4767
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4029 - loss: 1.6464 - val_accuracy: 0.4198 - val_loss: 1.6033
Epoch 26/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4706 - accuracy: 0.4681 - val_loss: 1.4450 - val_accuracy: 0.4781
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.3974 - loss: 1.6638 - val_accuracy: 0.4278 - val_loss: 1.5731
Epoch 27/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4660 - accuracy: 0.4706 - val_loss: 1.4456 - val_accuracy: 0.4766
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 37ms/step - accuracy: 0.4035 - loss: 1.6370 - val_accuracy: 0.4302 - val_loss: 1.5663
Epoch 28/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4664 - accuracy: 0.4707 - val_loss: 1.4443 - val_accuracy: 0.4776
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4027 - loss: 1.6349 - val_accuracy: 0.4458 - val_loss: 1.5349
Epoch 29/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4678 - accuracy: 0.4674 - val_loss: 1.4411 - val_accuracy: 0.4802
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4054 - loss: 1.6196 - val_accuracy: 0.4349 - val_loss: 1.5709
Epoch 30/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4654 - accuracy: 0.4704 - val_loss: 1.4411 - val_accuracy: 0.4801
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.4070 - loss: 1.6061 - val_accuracy: 0.4297 - val_loss: 1.5578
Epoch 31/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4655 - accuracy: 0.4702 - val_loss: 1.4402 - val_accuracy: 0.4787
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4105 - loss: 1.6172 - val_accuracy: 0.4250 - val_loss: 1.5735
Epoch 32/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4620 - accuracy: 0.4735 - val_loss: 1.4402 - val_accuracy: 0.4781
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4197 - loss: 1.5960 - val_accuracy: 0.4259 - val_loss: 1.5677
Epoch 33/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4668 - accuracy: 0.4699 - val_loss: 1.4397 - val_accuracy: 0.4783
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4156 - loss: 1.5989 - val_accuracy: 0.4400 - val_loss: 1.5395
Epoch 34/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4619 - accuracy: 0.4724 - val_loss: 1.4382 - val_accuracy: 0.4793
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.4214 - loss: 1.5862 - val_accuracy: 0.4486 - val_loss: 1.5237
Epoch 35/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4652 - accuracy: 0.4697 - val_loss: 1.4374 - val_accuracy: 0.4800
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4208 - loss: 1.5763 - val_accuracy: 0.4188 - val_loss: 1.5925
Epoch 36/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4618 - accuracy: 0.4707 - val_loss: 1.4372 - val_accuracy: 0.4794
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4227 - loss: 1.5803 - val_accuracy: 0.4525 - val_loss: 1.5174
Epoch 37/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4606 - accuracy: 0.4710 - val_loss: 1.4369 - val_accuracy: 0.4793
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4267 - loss: 1.5700 - val_accuracy: 0.4463 - val_loss: 1.5330
Epoch 38/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4613 - accuracy: 0.4706 - val_loss: 1.4363 - val_accuracy: 0.4806
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 37ms/step - accuracy: 0.4283 - loss: 1.5649 - val_accuracy: 0.4348 - val_loss: 1.5482
Epoch 39/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4631 - accuracy: 0.4713 - val_loss: 1.4361 - val_accuracy: 0.4804
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4332 - loss: 1.5581 - val_accuracy: 0.4486 - val_loss: 1.5251
Epoch 40/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4620 - accuracy: 0.4695 - val_loss: 1.4357 - val_accuracy: 0.4802
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4290 - loss: 1.5596 - val_accuracy: 0.4489 - val_loss: 1.5221
Epoch 41/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4639 - accuracy: 0.4706 - val_loss: 1.4355 - val_accuracy: 0.4801
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4318 - loss: 1.5589 - val_accuracy: 0.4494 - val_loss: 1.5202
Epoch 42/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4588 - accuracy: 0.4735 - val_loss: 1.4352 - val_accuracy: 0.4802
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4317 - loss: 1.5514 - val_accuracy: 0.4505 - val_loss: 1.5184
Epoch 43/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4573 - accuracy: 0.4734 - val_loss: 1.4352 - val_accuracy: 0.4794
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4353 - loss: 1.5504 - val_accuracy: 0.4561 - val_loss: 1.5081
Epoch 44/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4597 - accuracy: 0.4723 - val_loss: 1.4350 - val_accuracy: 0.4796
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4369 - loss: 1.5510 - val_accuracy: 0.4581 - val_loss: 1.5092
Epoch 45/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4572 - accuracy: 0.4741 - val_loss: 1.4349 - val_accuracy: 0.4799
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 35ms/step - accuracy: 0.4379 - loss: 1.5428 - val_accuracy: 0.4555 - val_loss: 1.5099
Epoch 46/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4561 - accuracy: 0.4756 - val_loss: 1.4348 - val_accuracy: 0.4801
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4421 - loss: 1.5475 - val_accuracy: 0.4579 - val_loss: 1.5073
Epoch 47/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4593 - accuracy: 0.4730 - val_loss: 1.4348 - val_accuracy: 0.4801
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4434 - loss: 1.5390 - val_accuracy: 0.4593 - val_loss: 1.5052
Epoch 48/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4613 - accuracy: 0.4733 - val_loss: 1.4348 - val_accuracy: 0.4802
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 34ms/step - accuracy: 0.4418 - loss: 1.5373 - val_accuracy: 0.4600 - val_loss: 1.5038
Epoch 49/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4591 - accuracy: 0.4710 - val_loss: 1.4348 - val_accuracy: 0.4803
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 6s 38ms/step - accuracy: 0.4400 - loss: 1.5367 - val_accuracy: 0.4596 - val_loss: 1.5045
Epoch 50/50
-157/157 [==============================] - 6s 36ms/step - loss: 1.4566 - accuracy: 0.4766 - val_loss: 1.4348 - val_accuracy: 0.4803
-40/40 [==============================] - 1s 17ms/step - loss: 1.4375 - accuracy: 0.4790
-Accuracy on the test set: 47.9%.
+ 157/157 ━━━━━━━━━━━━━━━━━━━━ 5s 35ms/step - accuracy: 0.4448 - loss: 1.5321 - val_accuracy: 0.4595 - val_loss: 1.5048
+ 40/40 ━━━━━━━━━━━━━━━━━━━━ 3s 71ms/step - accuracy: 0.4496 - loss: 1.5088
+Accuracy on the test set: 44.66%.
```