-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
312 lines (244 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import yfinance as yf
from sklearn.preprocessing import StandardScaler
import logging
import matplotlib.pyplot as plt
import seaborn as sns
from collections import deque
import time
from scipy import stats
from tabulate import tabulate
import ta
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 400),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(400, 300),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(300, action_dim),
nn.Tanh()
)
self.max_action = max_action
def forward(self, state):
return self.max_action * self.net(state)
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.net = nn.Sequential(
nn.Linear(state_dim + action_dim, 400),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(400, 300),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(300, 1)
)
def forward(self, state, action):
return self.net(torch.cat([state, action], 1))
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.net = nn.Sequential(
nn.Linear(state_dim + action_dim, 400),
nn.BatchNorm1d(400),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(400, 300),
nn.BatchNorm1d(300),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(300, 1)
)
def forward(self, state, action):
return self.net(torch.cat([state, action], 1))
class TD3:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=3e-4)
self.critic_1 = Critic(state_dim, action_dim).to(device)
self.critic_2 = Critic(state_dim, action_dim).to(device)
self.critic_target_1 = Critic(state_dim, action_dim).to(device)
self.critic_target_2 = Critic(state_dim, action_dim).to(device)
self.critic_target_1.load_state_dict(self.critic_1.state_dict())
self.critic_target_2.load_state_dict(self.critic_2.state_dict())
self.critic_optimizer = optim.Adam(list(self.critic_1.parameters()) + list(self.critic_2.parameters()), lr=3e-4)
self.max_action = max_action
self.total_it = 0
@torch.no_grad()
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=256, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2):
for it in range(iterations):
batch_states, batch_actions, batch_rewards, batch_next_states = replay_buffer.sample(batch_size)
state = torch.FloatTensor(batch_states).to(device)
action = torch.FloatTensor(batch_actions).to(device)
reward = torch.FloatTensor(batch_rewards).to(device)
next_state = torch.FloatTensor(batch_next_states).to(device)
with torch.no_grad():
noise = (torch.randn_like(action) * policy_noise).clamp(-noise_clip, noise_clip)
next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action)
target_Q1, target_Q2 = self.critic_target_1(next_state, next_action), self.critic_target_2(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + (discount * target_Q)
current_Q1, current_Q2 = self.critic_1(state, action), self.critic_2(state, action)
critic_loss = nn.functional.mse_loss(current_Q1, target_Q) + nn.functional.mse_loss(current_Q2, target_Q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
if it % policy_freq == 0:
actor_loss = -self.critic_1(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.critic_1.parameters(), self.critic_target_1.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.critic_2.parameters(), self.critic_target_2.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
self.total_it += 1
class ReplayBuffer:
def __init__(self, max_size=1e6):
self.storage = []
self.max_size = int(max_size)
self.ptr = 0
def add(self, state, action, reward, next_state):
if len(self.storage) == self.max_size:
self.storage[int(self.ptr)] = (state, action, reward, next_state)
self.ptr = (self.ptr + 1) % self.max_size
else:
self.storage.append((state, action, reward, next_state))
def sample(self, batch_size):
ind = np.random.randint(0, len(self.storage), size=batch_size)
batch = [self.storage[i] for i in ind]
return map(np.array, zip(*batch))
def add_technical_indicators(df):
df['SMA_20'] = ta.trend.sma_indicator(df['Close'], window=20)
df['SMA_50'] = ta.trend.sma_indicator(df['Close'], window=50)
df['RSI'] = ta.momentum.rsi(df['Close'], window=14)
df['MACD'] = ta.trend.macd_diff(df['Close'])
df['ATR'] = ta.volatility.average_true_range(df['High'], df['Low'], df['Close'])
df.dropna(inplace=True)
return df
def normalize_state(state, history):
return (state - history.mean()) / history.std()
def calculate_reward(action, next_price, current_price, risk_free_rate=0.02):
returns = (next_price - current_price) / current_price
portfolio_return = action * returns
excess_return = portfolio_return - risk_free_rate / 252
return excess_return
def calculate_sharpe_ratio(returns, risk_free_rate=0.02):
excess_returns = returns - risk_free_rate / 252
return np.mean(excess_returns) / np.std(excess_returns) * np.sqrt(252)
def plot_training_metrics(rewards, sharpe_ratios, training_times):
epochs = range(1, len(rewards) + 1)
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.plot(epochs, rewards, label="Rewards")
plt.title("Episode Rewards")
plt.xlabel("Epoch")
plt.ylabel("Total Reward")
plt.subplot(1, 3, 2)
plt.plot(epochs, sharpe_ratios, label="Sharpe Ratios", color="orange")
plt.title("Sharpe Ratios")
plt.xlabel("Epoch")
plt.ylabel("Sharpe Ratio")
plt.subplot(1, 3, 3)
plt.plot(epochs, training_times, label="Training Time", color="green")
plt.title("Training Time per Epoch")
plt.xlabel("Epoch")
plt.ylabel("Time (seconds)")
plt.tight_layout()
plt.show()
def train_td3_stock_prediction(stock_data, epochs=100, batch_size=256):
scaler = StandardScaler()
scaled_data = scaler.fit_transform(stock_data)
state_dim = scaled_data.shape[1]
action_dim = 1
max_action = 1
print(f"State dimension: {state_dim}")
td3 = TD3(state_dim, action_dim, max_action)
replay_buffer = ReplayBuffer(max_size=1e5)
episode_reward = []
episode_sharpe_ratio = []
training_times = []
all_actions = []
start_time = time.time()
for epoch in range(epochs):
epoch_start_time = time.time()
state = scaled_data[0]
episode_return = 0
returns = []
epoch_actions = []
for t in range(1, len(scaled_data)):
action = td3.select_action(state)
next_state = scaled_data[t]
reward = calculate_reward(action, next_state[3], state[3])
replay_buffer.add(state, action, reward, next_state)
episode_return += reward
returns.append(reward)
epoch_actions.append(action)
state = next_state
if len(replay_buffer.storage) > batch_size:
td3.train(replay_buffer, min(10, len(replay_buffer.storage) - 1), batch_size)
episode_reward.append(float(episode_return))
sharpe = calculate_sharpe_ratio(np.array(returns))
episode_sharpe_ratio.append(float(sharpe))
epoch_time = time.time() - epoch_start_time
training_times.append(epoch_time)
all_actions.append(epoch_actions)
if (epoch + 1) % 10 == 0:
total_time = time.time() - start_time
logging.info(f"Epoch {epoch + 1}/{epochs}, "
f"Reward: {episode_reward[-1]:.4f}, "
f"Sharpe Ratio: {episode_sharpe_ratio[-1]:.4f}, "
f"Epoch Time: {epoch_time:.2f}s, "
f"Total Time: {total_time:.2f}s")
total_time = time.time() - start_time
logging.info(f"Total training time: {total_time:.2f} seconds")
return td3, episode_reward, episode_sharpe_ratio, training_times, all_actions
def load_stock_data(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
df = stock.history(start=start_date, end=end_date)
df = add_technical_indicators(df)
return df
def evaluate_model_on_test_data(model, test_data):
test_rewards = []
state = test_data[0]
for t in range(1, len(test_data)):
action = model.select_action(state)
next_state = test_data[t]
reward = calculate_reward(action, next_state[3], state[3])
test_rewards.append(reward)
state = next_state
sharpe_ratio = calculate_sharpe_ratio(np.array(test_rewards))
logging.info(f"Test Sharpe Ratio: {sharpe_ratio:.4f}")
return test_rewards, sharpe_ratio
if __name__ == "__main__":
ticker = "AAPL"
start_date = "2018-01-01"
end_date = "2023-12-31"
stock_data = load_stock_data(ticker, start_date, end_date)
trained_model, rewards, sharpe_ratios, training_times, all_actions = train_td3_stock_prediction(stock_data.values)
torch.save(trained_model.actor.state_dict(), f'td3_stock_prediction_model_{ticker}.pth')
logging.info(f"Model training completed and saved for {ticker}.")
plot_training_metrics(rewards, sharpe_ratios, training_times)
test_start_date = "2024-01-01"
test_end_date = "2024-04-01"
test_data = load_stock_data(ticker, test_start_date, test_end_date)
test_rewards, test_sharpe_ratio = evaluate_model_on_test_data(trained_model, test_data.values)
logging.info(f"Test Evaluation Completed: Sharpe Ratio {test_sharpe_ratio}")