-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathinference.py
191 lines (154 loc) · 7.08 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from librosa.filters import mel as librosa_mel_fn
from scipy.io.wavfile import write
from tqdm import tqdm
import argparse
import json
import numpy as np
import os
import re
import torch
import utils.utils as utils
from models.encoder import Encoder
from models.generator import Generator
from models.multiscale import MultiScaleDiscriminator
from utils.dataset import Dataset
use_predicted_pitch = False
def chunker(testset, size):
"""
https://stackoverflow.com/a/434328
"""
seq = [testset[i] for i in range(len(testset))]
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
def get_output_base_path(checkpoint_path):
base_dir = os.path.dirname(checkpoint_path)
match = re.compile(r'.*_([0-9]+)').match(checkpoint_path)
name = 'eval-%d' % int(match.group(1)) if match else 'eval'
return os.path.join(base_dir, name)
def load_checkpoint(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
try:
model.load_state_dict(checkpoint_dict['model'], strict=True)
except:
model.load_state_dict(checkpoint_dict['model'], strict=False)
print("Loaded checkpoint '{}'" .format(checkpoint_path))
return model
def adapt_f0(s, t):
if use_predicted_pitch:
s = utils.to_gpu(torch.from_numpy(s)).view(1, -1, 1).float()
t = utils.to_gpu(torch.from_numpy(t)).view(1, -1, 1).float()
s = pitch_model(s, t)[0, :].cpu().numpy()
return s
else:
tmp_s = np.asarray([x for x in s if x > 0]).mean()
tmp_t = np.asarray([x for x in t if x > 0]).mean()
for i in range(s.shape[0]):
if s[i] > 0:
s[i] = s[i] * tmp_t / tmp_s
return s
class TestSet(Dataset):
def __init__(self, file_list, ppg_dir, f0_dir, audio_dir, sp_dir, se_files,
feat_used, pitch_norm, segment_length, mu_quantization,
filter_length, hop_length, win_length, sampling_rate):
self.feat_used = feat_used
self.pitch_norm = pitch_norm
self.hop_length = hop_length
self.sampling_rate = sampling_rate
self.segment_length = segment_length
self.segment_n_frames = segment_length // hop_length
self.mu_quantization = mu_quantization
self.sampling_rate = sampling_rate
data_dir = os.path.dirname(file_list)
sp_dir = os.path.join(data_dir, 'mels')
f0_dir = os.path.join(data_dir, 'f0_reaper')
se_files = os.path.join(data_dir, 'utt_emb_sing3.ark')
file_list = utils.files_to_list(file_list)
self.file_list = ['_'.join(x.split('|')) for x in file_list]
ppg_list, f0_list, se_list = zip(*[x.split('|') for x in file_list])
if 'p' in feat_used:
ppg_files = [os.path.join(ppg_dir, x + '.npy') for x in ppg_list]
ppg_files = [self.parse_ppg_file(x) for x in tqdm(ppg_files)]
self.ppg_files = ppg_files
if 'f' in feat_used:
f0_files = [os.path.join(f0_dir, x + '.f0') for x in ppg_list]
f0_files = [self.parse_f0_file(x) for x in tqdm(f0_files)]
target_f0 = [os.path.join(f0_dir, x + '.f0') for x in se_list]
target_f0 = [self.parse_f0_file(x) for x in tqdm(target_f0)]
f0_files = [adapt_f0(x, target_f0[i]) for i, x in enumerate(f0_files)]
f0_files = [x * float(f0_list[i]) for i, x in enumerate(f0_files)]
self.f0_files = f0_files
if 's' in feat_used:
se_files = self.parse_se_file(se_files, se_list)
self.se_files = se_files
if 'a' in feat_used and encoder_config['speaker_input'] == 'audio':
ref_files = [os.path.join(sp_dir, x + '.npy') for x in tqdm(se_list)]
self.ref_files =[np.load(x) for x in ref_files]
def __getitem__(self, index):
cond = self.parse_input(index).transpose(1, 0)
name = self.file_list[index]
if hasattr(self, 'ref_files'):
return cond, self.ref_files[index], name
return cond, name
def parse_se_file(self, se_file, train_list):
se_dict = {}
with open(se_file) as fin:
for line in fin.readlines():
segs = line.strip().split()
se_dict[segs[0]] = np.asarray([float(x) for x in segs[2: -1]])
outputs = []
for x in train_list:
if x not in se_dict:
x = '_'.join(x.split('_')[: -1])
outputs.append(se_dict[x])
return np.asarray(outputs)
def main(model_filename, pitch_model_filename, output_dir, batch_size):
model = torch.nn.Module()
model.add_module('encoder', Encoder(**encoder_config))
model.add_module('generator', Generator(sum(encoder_config['n_out_channels'])))
model = load_checkpoint(model_filename, model).cuda()
model.eval()
if os.path.isfile(pitch_model_filename):
global pitch_model, use_predicted_pitch
use_predicted_pitch = True
pitch_model = PitchModel(**pitch_config)
pitch_model = load_checkpoint(pitch_model_filename, pitch_model).cuda()
pitch_model.eval()
testset = TestSet(**(data_config))
for files in chunker(testset, batch_size):
files = list(zip(*files))
cond_input, file_paths = files[: -1], files[-1]
cond_input = [utils.to_gpu(torch.from_numpy(np.stack(x))).float()
for x in cond_input]
#cond_input = model.encoder(cond_input.transpose(1, 2)).transpose(1, 2)
cond_input = model.encoder(cond_input[0])
audio = model.generator(cond_input)
for i, file_path in enumerate(file_paths):
print("writing {}".format(file_path))
wav = audio[i].cpu().squeeze().detach().numpy() * 32768.0
write("{}/{}.wav".format(output_dir, file_path),
data_config['sampling_rate'], wav.astype(np.int16))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', "--config", required=True)
parser.add_argument('-f', "--filelist_path", required=True)
parser.add_argument('-m', "--checkpoint_path", required=True)
parser.add_argument('-p', "--pitch_checkpoint_path", default='')
parser.add_argument('-o', "--output_dir", default='')
parser.add_argument('-b', "--batch_size", default=1)
args = parser.parse_args()
if args.output_dir == '':
args.output_dir = get_output_base_path(args.checkpoint_path)
os.makedirs(args.output_dir, exist_ok=True)
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
global data_config, encoder_config, decoder_config, postnet_config
data_config = config["data_config"]
data_config['file_list'] = args.filelist_path
encoder_config = config["encoder_config"]
if "pitch_config" in config:
global pitch_config
pitch_config = config["pitch_config"]
with torch.no_grad():
main(args.checkpoint_path, args.pitch_checkpoint_path, args.output_dir, args.batch_size)