-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain.py
283 lines (244 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from tensorboardX import SummaryWriter
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
import argparse
import json
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from distributed import init_distributed, apply_gradient_allreduce
from models.disentangler import Disentangler
from models.encoder import Encoder
from models.generator import Generator
from models.multiscale import MultiScaleDiscriminator
from utils.dataset import Dataset
from utils.loss import MultiResolutionSTFTLoss
from utils.optimizer import *
from utils.utils import to_gpu, LossMeter
def clean_checkpoint_directory(checkpoint_path):
checkpoint_dir, model_name = os.path.split(checkpoint_path)
prefix, iterations = model_name.split('_')
iterations = int(iterations)
for filename in os.listdir(checkpoint_dir):
if prefix not in filename:
continue
iters = int(filename.split('_')[-1])
if iters % 50000 != 0 and iterations - iters > 10000:
os.remove(os.path.join(checkpoint_dir, filename))
def load_checkpoint(checkpoint_path, model, g_optimizer, d_optimizer):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
try:
g_optimizer.load_state_dict(checkpoint_dict['g_optimizer'])
d_optimizer.load_state_dict(checkpoint_dict['d_optimizer'])
model.load_state_dict(checkpoint_dict['model'])
except:
print('Loaded model is not the same as the current one')
g_optimizer.load_state_dict(checkpoint_dict['g_optimizer'])
model.load_state_dict(checkpoint_dict['model'], strict=False)
print("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return model, g_optimizer, d_optimizer, iteration
def save_checkpoint(model, g_optimizer, d_optimizer, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
clean_checkpoint_directory(filepath)
torch.save({'model': model.state_dict(),
'iteration': iteration,
'g_optimizer': g_optimizer.state_dict(),
'd_optimizer': d_optimizer.state_dict()}, filepath)
def train(num_gpus, rank, group_name, output_directory, epochs,
g_learning_rate, d_learning_rate, adv_ag, adv_fd,
lamda_adv, lamda_feat, warmup_steps, decay_learning_rate,
iters_per_checkpoint, batch_size, seed, checkpoint_path):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
init_distributed(rank, num_gpus, group_name, **dist_config)
#=====END: ADDED FOR DISTRIBUTED======
model = torch.nn.Module()
model.add_module('encoder', Encoder(**encoder_config))
model.add_module('generator', Generator(sum(encoder_config['n_out_channels'])))
model.add_module('discriminator', MultiScaleDiscriminator(**discriminator_config))
model.add_module('disentangler', Disentangler(encoder_config['n_out_channels'][0],
sum(encoder_config['n_out_channels'][1:])))
model = model.cuda()
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
model = apply_gradient_allreduce(model)
#=====END: ADDED FOR DISTRIBUTED======
g_parameters = list(model.generator.parameters())
g_parameters = list(model.encoder.parameters()) + g_parameters
g_optimizer = Lookahead(RAdam(g_parameters, lr=g_learning_rate))
d_parameters = list(model.discriminator.parameters())
d_parameters = list(model.disentangler.parameters()) + d_parameters
d_optimizer = Lookahead(RAdam(d_parameters, lr=d_learning_rate))
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
model, g_optimizer, d_optimizer, iteration = load_checkpoint(
checkpoint_path, model, g_optimizer, d_optimizer)
iteration += 1 # next iteration is iteration + 1
customer_g_optimizer = Optimizer(g_optimizer, g_learning_rate,
iteration, warmup_steps, decay_learning_rate)
customer_d_optimizer = Optimizer(d_optimizer, d_learning_rate,
iteration, warmup_steps, decay_learning_rate)
criterion = nn.MSELoss()
l1_loss = nn.L1Loss()
stft_criterion = MultiResolutionSTFTLoss()
trainset = Dataset(**data_config)
# =====START: ADDED FOR DISTRIBUTED======
train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None
# =====END: ADDED FOR DISTRIBUTED======
train_loader = DataLoader(trainset, num_workers=1,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=batch_size,
pin_memory=False,
drop_last=True)
# Get shared output_directory ready
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
print("output directory", output_directory)
logdir = os.path.join(output_directory,
time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime()))
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(logdir=logdir)
anchors = [
'loss_g', 'loss_g_sc', 'loss_g_mag', 'loss_g_adv', 'loss_g_feat',
'loss_g_fd', 'loss_d', 'loss_d_real', 'loss_d_fake', 'loss_d_fd']
meters = {x: LossMeter(x, writer, 100, iteration, True)
for x in anchors}
model.train()
epoch_offset = max(0, int(iteration / len(train_loader)))
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, epochs):
train_sampler.set_epoch(epoch) if train_sampler is not None else None
tbar = tqdm(enumerate(train_loader)) if rank == 0 else enumerate(train_loader)
for i, batch in tbar:
model.zero_grad()
cond, s, a = [to_gpu(x) for x in batch]
# Get generator outputs
x = model.encoder(cond)
g_outputs = model.generator(x)
losses = {}
# Get Discrimiantor loss
customer_d_optimizer.zero_grad()
d_loss = []
# Adversarial training for audio generation
if adv_ag == True:
real_scores, _ = model.discriminator(a.unsqueeze(1))
fake_scores, _ = model.discriminator(g_outputs.detach())
d_loss_fake_list, d_loss_real_list = [], []
for (real_score, fake_score) in zip(real_scores, fake_scores):
d_loss_real_list.append(criterion(real_score, torch.ones_like(real_score)))
d_loss_fake_list.append(criterion(fake_score, torch.zeros_like(fake_score)))
d_loss_real = sum(d_loss_real_list) / len(d_loss_real_list)
d_loss_fake = sum(d_loss_fake_list) / len(d_loss_fake_list)
d_loss = d_loss + [d_loss_real, d_loss_fake]
losses.update({'loss_d_real': d_loss_real,
'loss_d_fake': d_loss_fake})
# Adversarial training for feature disentanglement
if adv_fd == True:
split_x = torch.split(x.detach(), encoder_config['n_out_channels'], dim=1)
pred = model.disentangler(split_x[0])
d_loss_fd = F.l1_loss(pred, torch.cat((split_x[1: ]), dim=1))
d_loss = d_loss + [d_loss_fd]
losses.update({'loss_d_fd': d_loss_fd})
if len(d_loss) > 0:
d_loss = sum(d_loss)
d_loss.backward()
nn.utils.clip_grad_norm_(d_parameters, max_norm=10)
customer_d_optimizer.step_and_update_lr()
losses.update({'loss_d': d_loss})
# Get generator loss
customer_g_optimizer.zero_grad()
g_clip_norm_scale = 10
# STFT Loss
sc_loss, mag_loss = stft_criterion(g_outputs.squeeze(1), a)
g_loss = sc_loss + mag_loss
losses.update({'loss_g_sc': sc_loss, 'loss_g_mag': mag_loss})
# Adversarial training for audio generation
if adv_ag == True:
fake_scores, fake_feats = model.discriminator(g_outputs)
real_scores, real_feats = model.discriminator(a.unsqueeze(1))
adv_loss_list, feat_loss_list = [], []
for i, fake_score in enumerate(fake_scores):
adv_loss_list.append(
criterion(fake_score, torch.ones_like(fake_score)))
adv_loss = sum(adv_loss_list) / len(adv_loss_list)
for i in range(len(fake_feats)):
for j in range(len(fake_feats[i])):
feat_loss_list.append(l1_loss(
fake_feats[i][j], real_feats[i][j].detach()))
feat_loss = sum(feat_loss_list) / len(feat_loss_list)
g_loss = g_loss + adv_loss * lamda_adv + feat_loss * lamda_feat
losses.update({'loss_g_adv': adv_loss})
losses.update({'loss_g_feat': feat_loss})
g_clip_norm_scale = 0.5
# Adversarial training for feature disentanglement
if adv_fd == True:
split_x = torch.split(x, encoder_config['n_out_channels'], dim=1)
pred = model.disentangler(split_x[0])
g_loss_fd = F.l1_loss(
pred, torch.cat((split_x[1: ]), dim=1).detach())
g_loss = g_loss + (-1.0) * g_loss_fd
losses.update({'loss_g_fd': g_loss_fd})
g_loss.backward()
nn.utils.clip_grad_norm_(g_parameters, max_norm=g_clip_norm_scale)
customer_g_optimizer.step_and_update_lr()
losses.update({'loss_g': g_loss})
# only output log of 0-th GPU
if rank == 0:
tbar.set_description("{:>7}: ".format(iteration) + ', '.join(
["{}: {:.1e}".format(x[5:], losses[x].item())
for x in losses.keys()]))
for x in losses:
meters[x].add(losses[x].item())
if (iteration % iters_per_checkpoint == 0):
checkpoint_path = "{}/model_{}".format(
output_directory, iteration)
save_checkpoint(model, g_optimizer, d_optimizer,
iteration, checkpoint_path)
iteration += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
args = parser.parse_args()
# Parse configs.
with open(args.config) as f:
data = f.read()
config = json.loads(data)
train_config = config["train_config"]
# Parse global configs.
global data_config, dist_config, encoder_config, discriminator_config
data_config = config["data_config"]
dist_config = config["dist_config"]
encoder_config = config["encoder_config"]
discriminator_config = config["discriminator_config"]
# Single GPU or Multi GPU
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if args.group_name == '':
print("WARNING: Multiple GPUs detected but no distributed group set")
print("Only running 1 GPU. Use distributed.py for multiple GPUs")
num_gpus = 1
if num_gpus == 1 and args.rank != 0:
raise Exception("Doing single GPU training on rank > 0")
# Begin Training
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
train(num_gpus, args.rank, args.group_name, **train_config)