forked from tsenghungchen/SA-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Att.py
executable file
·511 lines (429 loc) · 22.9 KB
/
Att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#-*- coding: utf-8 -*-
import tensorflow as tf
import pandas as pd
import numpy as np
import os, h5py, sys, argparse
import pdb
import time
import json
from collections import defaultdict
from tensorflow.models.rnn import rnn, rnn_cell
from keras.preprocessing import sequence
from cocoeval import COCOScorer
import unicodedata
gpu_id = 5
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Extract a CNN features')
parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use',
default=0, type=int)
parser.add_argument('--net', dest='model',
help='model to test',
default=None, type=str)
parser.add_argument('--dataset', dest='dataset',
help='dataset to extract',
default='train_val', type=str)
parser.add_argument('--task', dest='task',
help='train or test',
default='train', type=str)
parser.add_argument('--tg', dest='tg',
help='target to be extract lstm feature',
default='/home/Hao/tik/jukin/data/h5py', type=str)
parser.add_argument('--ft', dest='ft',
help='choose which feature type would be extract',
default='lstm1', type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
class Video_Caption_Generator():
def __init__(self, dim_image, n_words, dim_hidden, batch_size, n_lstm_steps, drop_out_rate, bias_init_vector=None):
self.dim_image = dim_image
self.n_words = n_words
self.dim_hidden = dim_hidden
self.batch_size = batch_size
self.n_lstm_steps = n_lstm_steps
self.drop_out_rate = drop_out_rate
with tf.device("/cpu:0"):
self.Wemb = tf.Variable(tf.random_uniform([n_words, dim_hidden], -0.1, 0.1), name='Wemb')
self.lstm3 = rnn_cell.LSTMCell(self.dim_hidden,2*self.dim_hidden,use_peepholes = True)
self.lstm3_dropout = rnn_cell.DropoutWrapper(self.lstm3,output_keep_prob=1 - self.drop_out_rate)
self.encode_image_W = tf.Variable( tf.random_uniform([dim_image, dim_hidden], -0.1, 0.1), name='encode_image_W')
self.encode_image_b = tf.Variable( tf.zeros([dim_hidden]), name='encode_image_b')
self.embed_att_w = tf.Variable(tf.random_uniform([dim_hidden, 1], -0.1,0.1), name='embed_att_w')
self.embed_att_Wa = tf.Variable(tf.random_uniform([dim_hidden, dim_hidden], -0.1,0.1), name='embed_att_Wa')
self.embed_att_Ua = tf.Variable(tf.random_uniform([dim_hidden, dim_hidden],-0.1,0.1), name='embed_att_Ua')
self.embed_att_ba = tf.Variable( tf.zeros([dim_hidden]), name='embed_att_ba')
self.embed_word_W = tf.Variable(tf.random_uniform([dim_hidden, n_words], -0.1,0.1), name='embed_word_W')
if bias_init_vector is not None:
self.embed_word_b = tf.Variable(bias_init_vector.astype(np.float32), name='embed_word_b')
else:
self.embed_word_b = tf.Variable(tf.zeros([n_words]), name='embed_word_b')
self.embed_nn_Wp = tf.Variable(tf.random_uniform([3*dim_hidden, dim_hidden], -0.1,0.1), name='embed_nn_Wp')
self.embed_nn_bp = tf.Variable(tf.zeros([dim_hidden]), name='embed_nn_bp')
def build_model(self):
video = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps, self.dim_image]) # b x n x d
video_mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps]) # b x n
caption = tf.placeholder(tf.int32, [self.batch_size, n_caption_step]) # b x 16
caption_mask = tf.placeholder(tf.float32, [self.batch_size, n_caption_step]) # b x 16
video_flat = tf.reshape(video, [-1, self.dim_image]) # (b x n) x d
image_emb = tf.nn.xw_plus_b( video_flat, self.encode_image_W, self.encode_image_b) # (b x n) x h
image_emb = tf.reshape(image_emb, [self.batch_size, self.n_lstm_steps, self.dim_hidden]) # b x n x h
image_emb = tf.transpose(image_emb, [1,0,2]) # n x b x h
state1 = tf.zeros([self.batch_size, self.lstm3.state_size]) # b x s
h_prev = tf.zeros([self.batch_size, self.dim_hidden]) # b x h
loss_caption = 0.0
current_embed = tf.zeros([self.batch_size, self.dim_hidden]) # b x h
brcst_w = tf.tile(tf.expand_dims(self.embed_att_w, 0), [self.n_lstm_steps,1,1]) # n x h x 1
image_part = tf.batch_matmul(image_emb, tf.tile(tf.expand_dims(self.embed_att_Ua, 0), [self.n_lstm_steps,1,1])) + self.embed_att_ba # n x b x h
for i in range(n_caption_step):
e = tf.tanh(tf.matmul(h_prev, self.embed_att_Wa) + image_part) # n x b x h
e = tf.batch_matmul(e, brcst_w) # unnormalized relevance score
e = tf.reduce_sum(e,2) # n x b
e_hat_exp = tf.mul(tf.transpose(video_mask), tf.exp(e)) # n x b
denomin = tf.reduce_sum(e_hat_exp,0) # b
denomin = denomin + tf.to_float(tf.equal(denomin, 0)) # regularize denominator
alphas = tf.tile(tf.expand_dims(tf.div(e_hat_exp,denomin),2),[1,1,self.dim_hidden]) # n x b x h # normalize to obtain alpha
attention_list = tf.mul(alphas, image_emb) # n x b x h
atten = tf.reduce_sum(attention_list,0) # b x h # soft-attention weighted sum
if i > 0: tf.get_variable_scope().reuse_variables()
with tf.variable_scope("LSTM3"):
output1, state1 = self.lstm3_dropout( tf.concat(1,[atten, current_embed]), state1 ) # b x h
output2 = tf.tanh(tf.nn.xw_plus_b(tf.concat(1,[output1,atten,current_embed]), self.embed_nn_Wp, self.embed_nn_bp)) # b x h
h_prev = output1 # b x h
labels = tf.expand_dims(caption[:,i], 1) # b x 1
indices = tf.expand_dims(tf.range(0, self.batch_size, 1), 1) # b x 1
concated = tf.concat(1, [indices, labels]) # b x 2
onehot_labels = tf.sparse_to_dense(concated, tf.pack([self.batch_size, self.n_words]), 1.0, 0.0) # b x w
with tf.device("/cpu:0"):
current_embed = tf.nn.embedding_lookup(self.Wemb, caption[:,i])
logit_words = tf.nn.xw_plus_b(output2, self.embed_word_W, self.embed_word_b) # b x w
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logit_words, onehot_labels) # b x 1
cross_entropy = cross_entropy * caption_mask[:,i] # b x 1
loss_caption += tf.reduce_sum(cross_entropy) # 1
loss_caption = loss_caption / tf.reduce_sum(caption_mask)
loss = loss_caption
return loss, video, video_mask, caption, caption_mask
def build_generator(self):
video = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps, self.dim_image])
video_mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps])
video_flat = tf.reshape(video, [-1, self.dim_image])
image_emb = tf.nn.xw_plus_b( video_flat, self.encode_image_W, self.encode_image_b)
image_emb = tf.reshape(image_emb, [self.batch_size, self.n_lstm_steps, self.dim_hidden])
image_emb = tf.transpose(image_emb, [1,0,2])
state1 = tf.zeros([self.batch_size, self.lstm3.state_size])
h_prev = tf.zeros([self.batch_size, self.dim_hidden])
generated_words = []
current_embed = tf.zeros([self.batch_size, self.dim_hidden])
brcst_w = tf.tile(tf.expand_dims(self.embed_att_w, 0), [self.n_lstm_steps,1,1]) # n x h x 1
image_part = tf.batch_matmul(image_emb, tf.tile(tf.expand_dims(self.embed_att_Ua, 0), [self.n_lstm_steps,1,1])) + self.embed_att_ba # n x b x h
for i in range(n_caption_step):
e = tf.tanh(tf.matmul(h_prev, self.embed_att_Wa) + image_part) # n x b x h
e = tf.batch_matmul(e, brcst_w)
e = tf.reduce_sum(e,2) # n x b
e_hat_exp = tf.mul(tf.transpose(video_mask), tf.exp(e)) # n x b
denomin = tf.reduce_sum(e_hat_exp,0) # b
denomin = denomin + tf.to_float(tf.equal(denomin, 0))
alphas = tf.tile(tf.expand_dims(tf.div(e_hat_exp,denomin),2),[1,1,self.dim_hidden]) # n x b x h
attention_list = tf.mul(alphas, image_emb) # n x b x h
atten = tf.reduce_sum(attention_list,0) # b x h
if i > 0: tf.get_variable_scope().reuse_variables()
with tf.variable_scope("LSTM3") as vs:
output1, state1 = self.lstm3( tf.concat(1,[atten, current_embed]), state1 ) # b x h
lstm3_variables = [v for v in tf.all_variables() if v.name.startswith(vs.name)]
output2 = tf.tanh(tf.nn.xw_plus_b(tf.concat(1,[output1,atten,current_embed]), self.embed_nn_Wp, self.embed_nn_bp)) # b x h
h_prev = output1
logit_words = tf.nn.xw_plus_b( output2, self.embed_word_W, self.embed_word_b) # b x w
max_prob_index = tf.argmax(logit_words, 1) # b
generated_words.append(max_prob_index) # b
with tf.device("/cpu:0"):
current_embed = tf.nn.embedding_lookup(self.Wemb, max_prob_index)
generated_words = tf.transpose(tf.pack(generated_words))
return video, video_mask, generated_words, lstm3_variables
############### Global Parameters ###############
video_data_path_train = '/home/PaulChen/h5py_data/cont_augment/train_vn.txt'
video_data_path_val = '/home/PaulChen/h5py_data/cont_augment/val.txt'
video_data_path_test = '/home/PaulChen/h5py_data/cont_augment/test.txt'
video_feat_path = '/home/PaulChen/h5py_data/cont_augment/'
model_path = '/home/PaulChen/evalmodel/Att_baseline/models'
############## Train Parameters #################
dim_image = 4096*2
dim_hidden= 512*2
n_frame_step = 45
n_caption_step = 35
n_epochs = 200
batch_size = 100
learning_rate = 0.0001
##################################################
def get_video_data(video_data_path, video_feat_path, train_ratio=0.9):
video_data = pd.read_csv(video_data_path, sep=',')
video_data = video_data[video_data['Language'] == 'English']
video_data['video_path'] = video_data.apply(lambda row: row['VideoID']+'_'+str(row['Start'])+'_'+str(row['End'])+'.avi.npy', axis=1)
video_data['video_path'] = video_data['video_path'].map(lambda x: os.path.join(video_feat_path, x))
video_data = video_data[video_data['video_path'].map(lambda x: os.path.exists( x ))]
video_data = video_data[video_data['Description'].map(lambda x: isinstance(x, str))]
unique_filenames = video_data['video_path'].unique()
train_len = int(len(unique_filenames)*train_ratio)
train_vids = unique_filenames[:train_len]
test_vids = unique_filenames[train_len:]
train_data = video_data[video_data['video_path'].map(lambda x: x in train_vids)]
test_data = video_data[video_data['video_path'].map(lambda x: x in test_vids)]
return train_data, test_data
def get_video_data_HL(video_data_path, video_feat_path):
files = open(video_data_path)
List = []
for ele in files:
List.append(ele[:-1])
return np.array(List)
def get_video_data_jukin(video_data_path_train, video_data_path_val, video_data_path_test):
video_list_train = get_video_data_HL(video_data_path_train, video_feat_path)
train_title = []
title = []
fname = []
for ele in video_list_train:
batch_data = h5py.File(ele)
batch_fname = batch_data['fname']
batch_title = batch_data['title']
for i in xrange(len(batch_fname)):
fname.append(batch_fname[i])
title.append(batch_title[i])
train_title.append(batch_title[i])
video_list_val = get_video_data_HL(video_data_path_val, video_feat_path)
for ele in video_list_val:
batch_data = h5py.File(ele)
batch_fname = batch_data['fname']
batch_title = batch_data['title']
for i in xrange(len(batch_fname)):
fname.append(batch_fname[i])
title.append(batch_title[i])
video_list_test = get_video_data_HL(video_data_path_test, video_feat_path)
for ele in video_list_test:
batch_data = h5py.File(ele)
batch_fname = batch_data['fname']
batch_title = batch_data['title']
for i in xrange(len(batch_fname)):
fname.append(batch_fname[i])
title.append(batch_title[i])
fname = np.array(fname)
title = np.array(title)
train_title = np.array(train_title)
video_data = pd.DataFrame({'Description':train_title})
return video_data, video_list_train, video_list_val, video_list_test
def preProBuildWordVocab(sentence_iterator, word_count_threshold=5): # borrowed this function from NeuralTalk
print 'preprocessing word counts and creating vocab based on word count threshold %d' % (word_count_threshold, )
word_counts = {}
nsents = 0
for sent in sentence_iterator:
nsents += 1
for w in sent.lower().split(' '):
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
print 'filtered words from %d to %d' % (len(word_counts), len(vocab))
ixtoword = {}
ixtoword[0] = '.' # period at the end of the sentence. make first dimension be end token
wordtoix = {}
wordtoix['#START#'] = 0 # make first vector be the start token
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
word_counts['.'] = nsents
bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword])
bias_init_vector /= np.sum(bias_init_vector) # normalize to frequencies
bias_init_vector = np.log(bias_init_vector)
bias_init_vector -= np.max(bias_init_vector) # shift to nice numeric range
return wordtoix, ixtoword, bias_init_vector
def preProBuildLabel():
ixtoword = {}
wordtoix = {}
ix = 1
for w in range(1):
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
return wordtoix, ixtoword
def testing_one(sess, video_feat_path, ixtoword, video_tf, video_mask_tf, caption_tf, counter):
pred_sent = []
gt_sent = []
IDs = []
namelist = []
#print video_feat_path
test_data_batch = h5py.File(video_feat_path)
gt_captions = json.load(open('msvd2sent.json'))
video_feat = np.zeros((batch_size, n_frame_step, dim_image))
video_mask = np.zeros((batch_size, n_frame_step))
# video_feat = np.transpose(test_data_batch['data'],[1,0,2])
for ind in xrange(batch_size):
video_feat[ind,:,:] = test_data_batch['data'][:n_frame_step,ind,:]
idx = np.where(test_data_batch['label'][:,ind] != -1)[0]
if(len(idx) == 0):
continue
video_mask[ind,:idx[-1]+1] = 1.
generated_word_index = sess.run(caption_tf, feed_dict={video_tf:video_feat, video_mask_tf:video_mask})
#ipdb.set_trace()
for ind in xrange(batch_size):
cap_key = test_data_batch['fname'][ind]
if cap_key == '':
break
else:
generated_words = ixtoword[generated_word_index[ind]]
punctuation = np.argmax(np.array(generated_words) == '.')+1
generated_words = generated_words[:punctuation]
#ipdb.set_trace()
generated_sentence = ' '.join(generated_words)
pred_sent.append([{'image_id':str(counter),'caption':generated_sentence}])
namelist.append(cap_key)
for i,s in enumerate(gt_captions[cap_key]):
s = unicodedata.normalize('NFKD', s).encode('ascii','ignore')
gt_sent.append([{'image_id':str(counter),'cap_id':i,'caption':s}])
IDs.append(str(counter))
counter += 1
return pred_sent, gt_sent, IDs, counter, namelist
def testing_all(sess, test_data, ixtoword, video_tf, video_mask_tf, caption_tf):
pred_sent = []
gt_sent = []
IDs_list = []
flist = []
counter = 0
gt_dict = defaultdict(list)
pred_dict = {}
for _, video_feat_path in enumerate(test_data):
[b,c,d, counter, fns] = testing_one(sess, video_feat_path, ixtoword, video_tf, video_mask_tf, caption_tf, counter)
pred_sent += b
gt_sent += c
IDs_list += d
flist += fns
for k,v in zip(IDs_list,gt_sent):
gt_dict[k].append(v[0])
new_flist = []
new_IDs_list = []
for k,v in zip(range(len(pred_sent)),pred_sent):
if flist[k] not in new_flist:
new_flist.append(flist[k])
new_IDs_list.append(str(k))
pred_dict[str(k)] = v
#pdb.set_trace()
return pred_sent, gt_sent, new_IDs_list, gt_dict, pred_dict
def train():
meta_data, train_data, val_data, test_data = get_video_data_jukin(video_data_path_train, video_data_path_val, video_data_path_test)
captions = meta_data['Description'].values
captions = map(lambda x: x.replace('.', ''), captions)
captions = map(lambda x: x.replace(',', ''), captions)
wordtoix, ixtoword, bias_init_vector = preProBuildWordVocab(captions, word_count_threshold=1)
np.save('./data0/ixtoword', ixtoword)
model = Video_Caption_Generator(
dim_image=dim_image,
n_words=len(wordtoix),
dim_hidden=dim_hidden,
batch_size=batch_size,
n_lstm_steps=n_frame_step,
drop_out_rate = 0.5,
bias_init_vector=None)
tf_loss, tf_video, tf_video_mask, tf_caption, tf_caption_mask= model.build_model()
sess = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True))
with tf.device("/cpu:0"):
saver = tf.train.Saver(max_to_keep=100)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(tf_loss)
tf.initialize_all_variables().run()
tStart_total = time.time()
for epoch in range(n_epochs):
index = np.arange(len(train_data))
np.random.shuffle(index)
train_data = train_data[index]
tStart_epoch = time.time()
loss_epoch = np.zeros(len(train_data))
for current_batch_file_idx in xrange(len(train_data)):
tStart = time.time()
current_batch = h5py.File(train_data[current_batch_file_idx])
current_feats = np.zeros((batch_size, n_frame_step, dim_image))
current_video_masks = np.zeros((batch_size, n_frame_step))
current_video_len = np.zeros(batch_size)
for ind in xrange(batch_size):
current_feats[ind,:,:] = current_batch['data'][:n_frame_step,ind,:]
idx = np.where(current_batch['label'][:,ind] != -1)[0]
if len(idx) == 0:
continue
current_video_masks[ind,:idx[-1]+1] = 1
current_captions = current_batch['title']
current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ') if word in wordtoix], current_captions)
current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=n_caption_step-1)
current_caption_matrix = np.hstack( [current_caption_matrix, np.zeros( [len(current_caption_matrix),1]) ] ).astype(int)
current_caption_masks = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1]))
nonzeros = np.array( map(lambda x: (x != 0).sum()+1, current_caption_matrix ))
for ind, row in enumerate(current_caption_masks):
row[:nonzeros[ind]] = 1
_, loss_val = sess.run(
[train_op, tf_loss],
feed_dict={
tf_video: current_feats,
tf_video_mask : current_video_masks,
tf_caption: current_caption_matrix,
tf_caption_mask: current_caption_masks
})
loss_epoch[current_batch_file_idx] = loss_val
tStop = time.time()
#print "Epoch:", epoch, " Batch:", current_batch_file_idx, " Loss:", loss_val
#print "Time Cost:", round(tStop - tStart,2), "s"
print "Epoch:", epoch, " done. Loss:", np.mean(loss_epoch)
tStop_epoch = time.time()
print "Epoch Time Cost:", round(tStop_epoch - tStart_epoch,2), "s"
if np.mod(epoch, 10) == 0 or epoch == n_epochs - 1:
print "Epoch ", epoch, " is done. Saving the model ..."
with tf.device("/cpu:0"):
saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch)
current_batch = h5py.File(val_data[np.random.randint(0,len(val_data))])
video_tf, video_mask_tf, caption_tf, lstm3_variables_tf = model.build_generator()
ixtoword = pd.Series(np.load('./data0/ixtoword.npy').tolist())
[pred_sent, gt_sent, id_list, gt_dict, pred_dict] = testing_all(sess, train_data[-2:], ixtoword, video_tf, video_mask_tf, caption_tf)
for key in pred_dict.keys():
for ele in gt_dict[key]:
print "GT: " + ele['caption']
print "PD: " + pred_dict[key][0]['caption']
print '-------'
[pred_sent, gt_sent, id_list, gt_dict, pred_dict] = testing_all(sess, val_data, ixtoword,video_tf, video_mask_tf, caption_tf)
scorer = COCOScorer()
total_score = scorer.score(gt_dict, pred_dict, id_list)
sys.stdout.flush()
print "Finally, saving the model ..."
with tf.device("/cpu:0"):
saver.save(sess, os.path.join(model_path, 'model'), global_step=n_epochs)
tStop_total = time.time()
print "Total Time Cost:", round(tStop_total - tStart_total,2), "s"
def test(model_path='models/model-900', video_feat_path=video_feat_path):
meta_data, train_data, val_data, test_data = get_video_data_jukin(video_data_path_train, video_data_path_val, video_data_path_test)
# test_data = val_data # to evaluate on testing data or validation data
ixtoword = pd.Series(np.load('./data0/ixtoword.npy').tolist())
model = Video_Caption_Generator(
dim_image=dim_image,
n_words=len(ixtoword),
dim_hidden=dim_hidden,
batch_size=batch_size,
n_lstm_steps=n_frame_step,
drop_out_rate = 0,
bias_init_vector=None)
video_tf, video_mask_tf, caption_tf, lstm3_variables_tf = model.build_generator()
sess = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True))
with tf.device("/cpu:0"):
saver = tf.train.Saver()
saver.restore(sess, model_path)
for ind, row in enumerate(lstm3_variables_tf):
if ind % 4 == 0:
assign_op = row.assign(tf.mul(row,1-0.5))
sess.run(assign_op)
[pred_sent, gt_sent, id_list, gt_dict, pred_dict] = testing_all(sess, test_data, ixtoword,video_tf, video_mask_tf, caption_tf)
#np.savez('Att_result/'+model_path.split('/')[1],gt = gt_sent,pred=pred_sent)
scorer = COCOScorer()
total_score = scorer.score(gt_dict, pred_dict, id_list)
return total_score
if __name__ == '__main__':
args = parse_args()
if args.task == 'train':
with tf.device('/gpu:'+str(gpu_id)):
train()
elif args.task == 'test':
with tf.device('/gpu:'+str(gpu_id)):
total_score = test(model_path = args.model)